Connected And Autonomous Vehicle Related Research at ORNL

Presented at the National Rural Intelligent Transportation Systems Conference, Session of Connected and Autonomous Vehicle Initiatives in Tennessee, Chattanooga TN

October 5, 2016

Jan-Mou (James) Li, Ph.D.
Energy and Transportation Division

This presentation does not contain any proprietary, confidential, or otherwise restricted information
ORNL is DOE’s Largest Science and Energy Laboratory

- $1.5B budget
- 4,400 employees
- 3,000 research guests annually
- $750 million invested in modernization
- Nation’s largest materials research portfolio
- World’s most powerful open scientific computing facility
- Nation’s most diverse energy portfolio
- Operating the world’s most intense pulsed neutron source
- Managing the billion-dollar U.S. ITER project
Delivering science and technology: We lead major R&D programs for DOE and other customers
Focusing our energy R&D portfolio on delivering systems-level solutions

Vehicle technologies

Transportation Electrification

Building technologies

Integrated energy systems
ORNL’s vision is to integrate energy science and technology to create a sustainable, livable community.
Internet of Secure Things – Deployed in a Modern Utility

Measuring parameters for a robust, secure electric grid

Advanced Fixed & Mobile Sensors + Fiber Comm Backbone

1: EPB Headquarters
2: EPB Distribution Center
3: Riverside Substation, medium, 6 circuits, 46 kV to 12 kV
4: Dodson Substation, small, 3 circuits, 46 kV to 4 kV
5: Ridgedale Substation, large, 9 circuits, 46 kV to 12 kV

More info? fuhrpl@ornl.gov
Parameters measured include:

- Temp,
- Humidity,
- Pressure,
- Motion (accelerometers),
- Magnetometers,
- Radiation (γ),
- Coronal arc discharge,
- Thermal imagery,
- Visual cameras,
- Cellphone signals (Verizon, AT&T, T-Mobile, Sprint),
- CH4 (methane),
- CO2,
- H2,
- VOCs,
- CO,
- Alcohol (vapor),
- Chemical “fields”,
- Acoustic “fields”
- Particulates,
- Solar irradiance,
- N2O,
- Fluorinated gases

Residential & Commercial
bldg load monitoring
Electric and Magnetic fields
RFID & QR codes

Drone Proximity

Drone Alert
Example of Digital Infrastructure - EPB Radial Fiber
Tests of DSRC Units over Chattanooga Network
Chattanooga Department of Transportation – Transit Signal Prioritization
Balancing Fuel Economy and Performance of Signalized Intersection - Assessment of Vehicle-Infrastructure Coordination

• Benefit expected from vehicle-to-infrastructure (V2I) integration
 – Fuel economy
 – Measures of traffic

• Potential conflicts among measures have to be considered
 • Interaction loop between vehicles and infrastructure
 • Measures for vehicle or measures for traffic
 • Measures for drivers
 • Optimal performance

• A solution to interaction loop
 • Prioritization
 • New rules for right-of-way may be needed

Assisting DOT in building safety, security, privacy for connected vehicles

Potential impact: 80% reduction in accidents

- Developed new vehicle-based credential generation system for the National Highway Traffic Safety Administration.
 - Allows messages vehicles broadcast (e.g., BSMs) to be trusted
- Developed metric-based privacy tools for pilot data and operational deployments based on a complete analysis of CVE privacy issues.
 - Trajectory de-identification.
 - System-wide privacy metrics through evaluation of pseudonyms using modeling and simulation.

250+ million vehicles travel on 4 million miles of US roads

Privacy research supported by NHTSA, Federal Highway Administration, and Intelligent Transportation Systems Joint Program Office
Privacy Preserving Data Publishing

Vehicle Travel Data is Valuable

- Connected Vehicle BSMs are high-fidelity (DGPS), and they are transmitted at high frequency (10Hz).
- Pilot studies are being conducted to generate data that will drive innovation
- Individual travel patterns are often unique, and individual privacy should be protected to the extent possible.

ORNL tools integrate detailed map information, unique detectors for sensitive locations, and a metric-based method to “sanitize” very large vehicle trajectory databases.
Vehicle-Based Security Credential Management in a Nutshell

A public-key cryptography system for V2V communications (VPKI) where vehicle participants act as a subordinate certificate authority.

• Security
 o Vehicles generate BSM signing and verifying key (certificate) pairs (pseudonyms)
 o BSM recipients are sent pseudonym certificates to authenticate message signatures
 o BSM signatures are authenticated by recipients using sent or cached pseudonym certificates
 o Pseudonym certificates are trusted through group signatures

• Privacy
 o Pseudonyms change often; signing keys are private to each vehicle
 o Group signatures preserve privacy through cryptography
SHRP-2 NDS is a huge resource for transportation research and beyond...

- SHRP-2: The second Strategic Highway Research Program
- NDS: Naturalistic Driving Study
- As in many areas of scientific and engineering research, data is transforming scientific discovery ("The Fourth Paradigm: Data Intensive Science" Microsoft Research)
 - The data itself (volume, need for interpretation) can present challenges
 - Consequently, *automating data extraction from video and other sources* in the NDS can improve effectiveness and reduce the costs of using these data
- Such automation can help answer specific questions as well as lead to new lines of inquiry
SHRP-2 data reconfigured to improve visual analysis and automation

- Auto-detected Head pose
- Rear camera
- Face camera
- Front camera
- Hands camera
- "Birds eye view" transformation

SRI DCODE method of jointly tracking from multiple views
Example video from SHRP-2 NDS with baseline computer vision measurements
Summary of Five Selected Areas Related to Connected and Autonomous Vehicle
ACKNOWLEDGEMENTS

Jason Carter
Computational Sciences & Engineering Division, ORNL

Kevin Comstock
Tennessee Department of Transportation

Peter Fuhr
Electrical & Electronics Systems Research Division, ORNL

Thomas Karnowski
Electrical & Electronics Systems Research Division, ORNL

Omer Onar
Electrical & Electronics Systems Research Division, ORNL

John Van Winkle
Chattanooga Department of Transportation

More info? lij3@ornl.gov
Supplement Slides
Secretary Moniz Test Drives the 3D-Printed Shelby Cobra