Automated Variable Speeds in Rural and Urban Environments in Oregon

2015 National Rural ITS Conference Snowbird, Utah August 10thth, 2015

Joshua Crain
DKS Associates

Outline

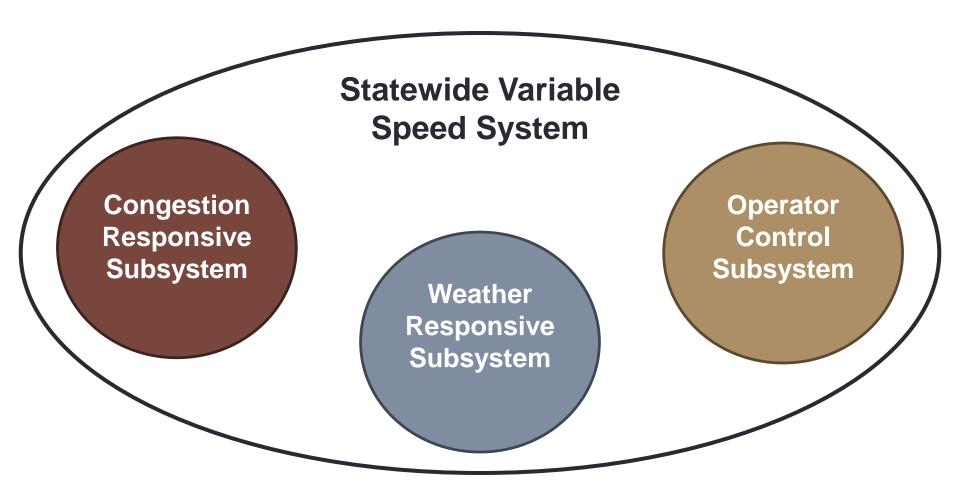
- 1. Variable Speed Systems in Oregon
- 2. Variable Speed Concepts
- 3. Variable Speed Algorithms
- 4. Deployment Planning Example
- 5. Implementation Results

Variable Speed Systems in Oregon

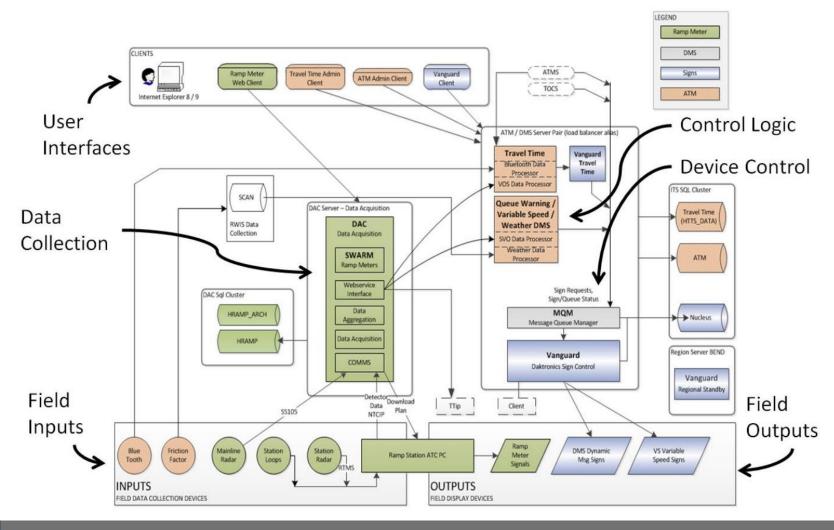
Variable Speed Systems in Oregon

Oregon DOT brands their system as "ODOT RealTime"

http://www.tripcheck.com/realtime/


Statewide Variable Speed System

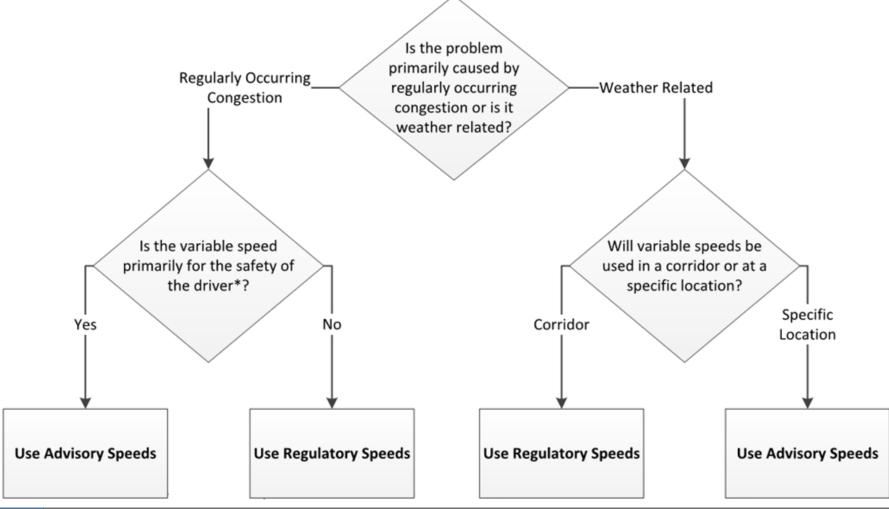
 Primary Goal: Provide an engineering solution that improves safety in high crash locations related to weather and/or congestion

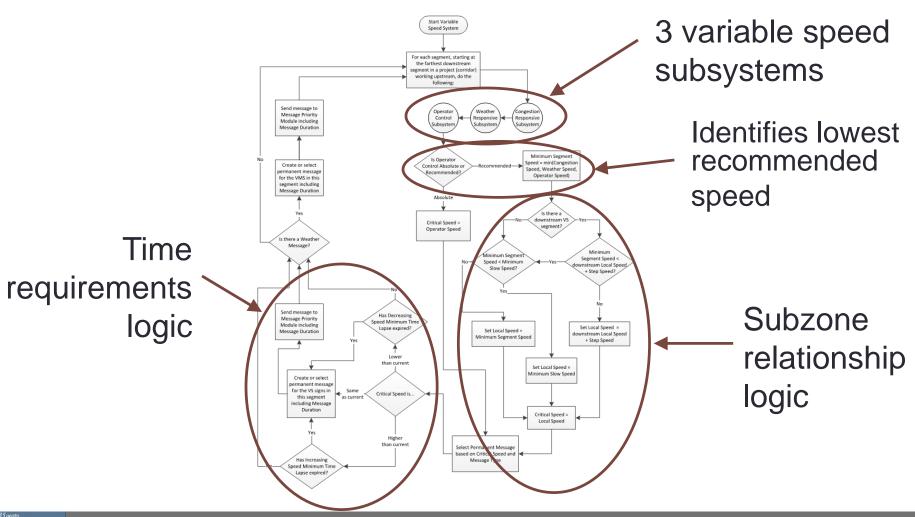

 Secondary Goal: Consistency of deployments and operations.

Multiple Variable Speed Subsystems

Automation Requires Integration

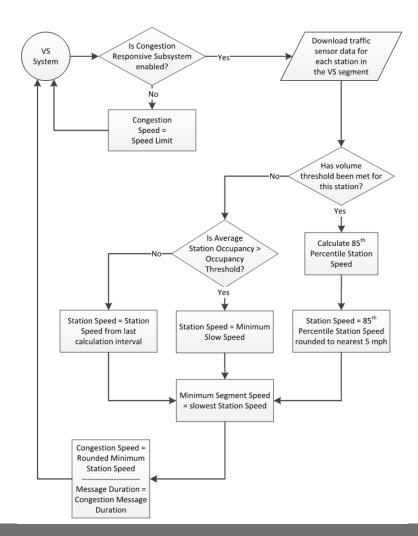
Regulatory vs. Advisory Speeds



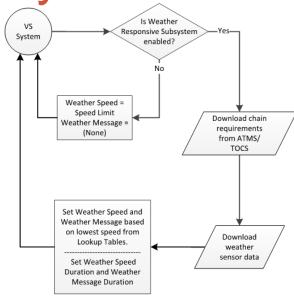

Key Differences

	Regulatory	Advisory
Compliance	 40% exceed posted speed 	 75% exceed advisory speed
Enforcement	 Posted speed is directly enforceable 	 Enforced through basic speed rule
Roadway	• > 2 miles	 Single geometric feature, or varying conditions
Public Perception	 Tied to revenue generation? Larger responsibility to display credible speed limits 	 More accepting, no direct financial implications
Legal Requirements	Engineering studySpeed zone orderOAR amendment for freeways	Engineering study recommended

Determine Correct System



Variable Speed Algorithms

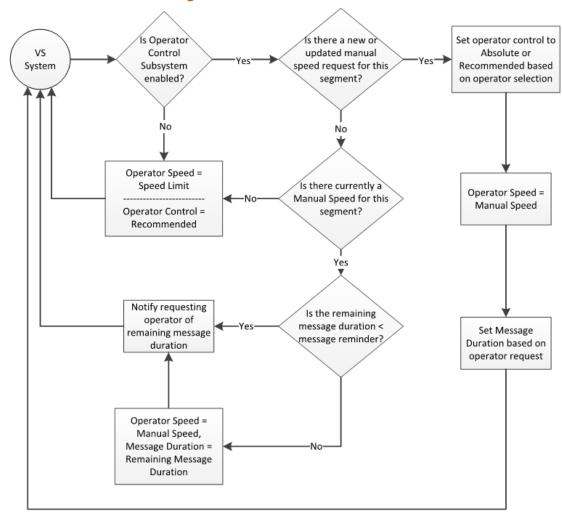

Congestion Responsive Subsystem

- Uses volume, occupancy, and speed from relevant detectors
- Performs volume and occupancy checks to determine traffic state
- Determines appropriate speed based on 85th percentile speeds
 - Must be within 9 mph of 85th percentile

Weather Responsive Subsystem

- Uses visibility and road surface conditions (grip factor) from relevant RWIS
- Depends on current chain requirements for the area

Weather Speed Lookup Tables


Grip Factor	> 0.70	0.70 > X > 0.30	< 0.30	
Visibility	(Dry to Wet)	(Very Wet)	(Snow or Ice)	
> 500'	Speed Limit	Speed Limit - 10 MPH	Speed Limit - 20 MPH	
< 500'	Speed Limit - 10 MPH	Speed Limit - 20 MPH	Minimum Speed	

Chain Condition		B or B1	С	
Visibility		(Towing or > 10,000 lbs)	(Chains Required)	
> 500'		45 MPH	35 MPH	
< 500'		35 MPH	Minimum Speed	

Operator Control Subsystem

- Manual speed selection by segment or corridor
- Can be recommended or absolute control
- Automatic time expirations
- Non-engineer operators have 10 pre-approved responses

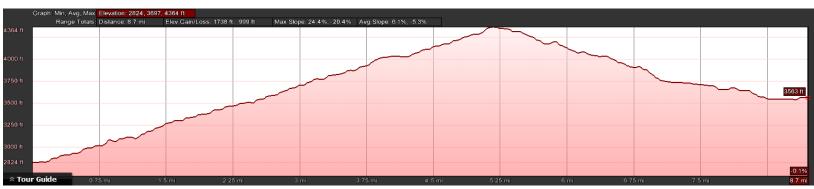
Pre-approved Operator Responses

- If automatic systems are not responding adequately, operator can recommend lower speeds
- Anything else requires state traffic engineer approval

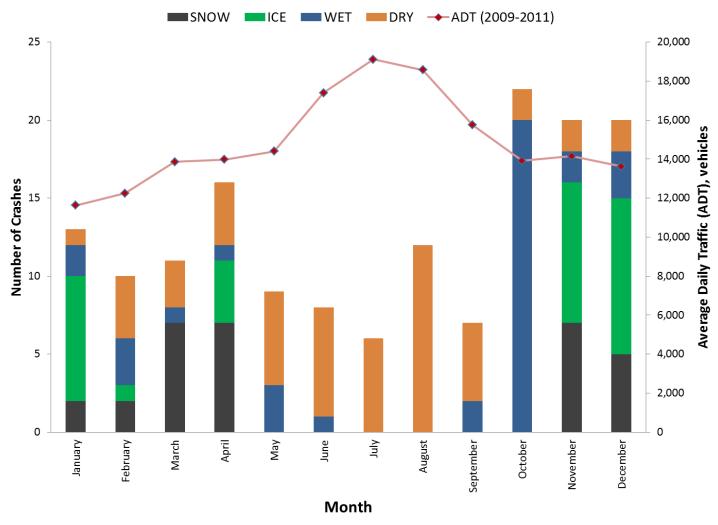
Condition	Speed	Command Priority	Duration (Default)	
Standing Water / Spots of Ice	Posted Speed - 10	Recommended	30 min	
Black Ice / Packed Snow Significant Traction Problems	Posted Speed - 20	Recommended	30 min	
Black Ice / Packed Snow Significant Traction Problems Not Resolved in Above Condition	ignificant Traction Problems Minimum Recon		30 min	
Ice / Packed Snow Plus Low Visibility	Minimum Slow Speed	Recommended	30 min	
Condition B or B1 Chain Requirement in Effect	l 45 l Recommendo		30 min	
Condition C Chain Requirement in Effect	t 35 Recommended		30 min	
Visibility Less Than 500 Feet	Posted Speed - 10	Recommended	30 min	
High Winds Posted Speed – 10		Recommended	30 min	
Work Zones Based on Approved Temporary Speed Zone Order	Speed Zone Order Value	Recommended	1 week	
False Sensor Readings	Posted Speed	Absolute	48 hours	

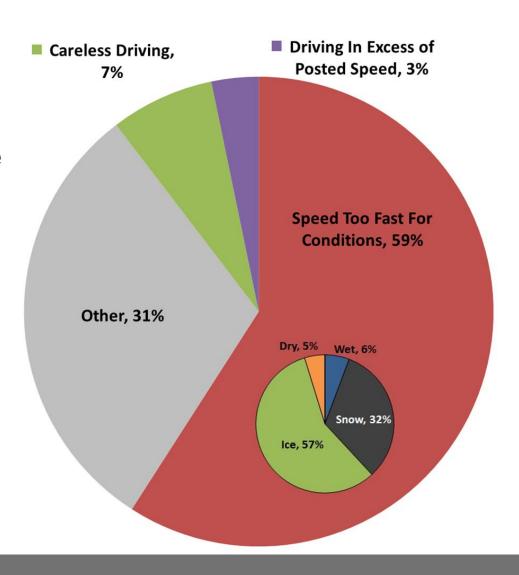
Deployment Planning

- Do your systems engineering analysis first.
 - Use the right tool to solve the problem.

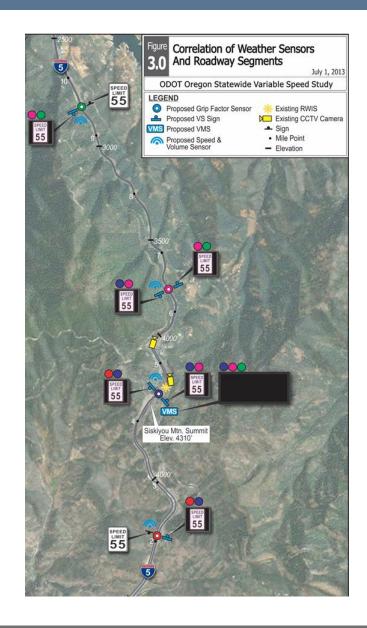

Legal Stuff

- Oregon Administrative Rules:
 - OAR 734-020-0018 requirements for public roads
 - OAR 734-020-0019 criteria for interstate freeways
- Engineering study must consider and document:
 - Same factors a prudent driver considers including congestion, road conditions, visibility, and weather
 - Boundaries of the variable speed zone
 - Location of each sign
 - Set of algorithms
 - Speed change intervals
 - Means, responsibilities, and procedures for changing speed
 - Means, responsibilities, and procedures for keeping records


Planning Example: I-5 Siskiyou Pass

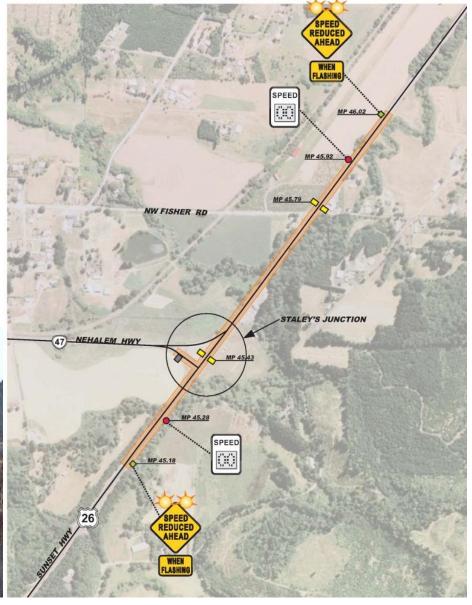


Crashes by Roadway Condition


Crash Analysis

- Few crashes are because people are exceeding the speed limit
- Most crashes are driving speed exceeding conditions
 - 89% on ice or snow

Signing Placement


- 3 subzones:
 - Uphill approaching summit
 - Summit area
 - Downhill
- Multiple traffic detectors
- Multiple weather stations
- Supplemental VMS
 - Also southbound, not shown

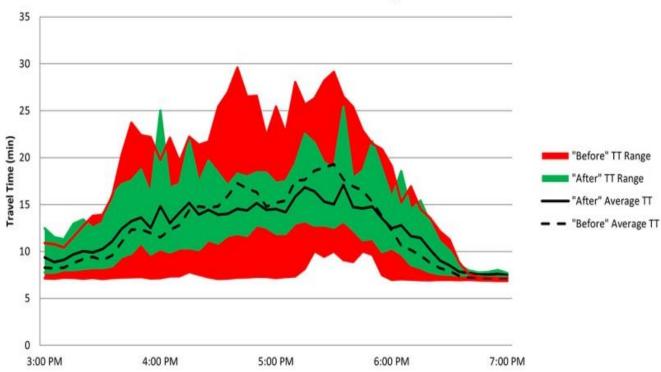
US 26 / OR 47 Staley's Junction

- Regulatory variable speed
- Short: 2/3 mile
- Goal: improve side street safety and mobility

System Performance

- Lower vehicle speeds: average and 85th percentile
- Less side street delay, shorter queues
- Low volume makes crash analysis difficult
- No complaints

			TABL	E 7				
		STALEY'S JCT. VSL ANALYSIS BY POSTED SPEED SUMMARY						
			June 12 8	& July 24, 2	011			
	Vehicles	Posted	Average	85%	Percent	Pace	Percent	Maximum
		Speed	Speed	Speed	Exceeding	Limits	In Pace	Speed
AVERAGES	231	50 MPH	47	52	>50=23%	43-53	82%	58
AVERAGES	217	45 MPH	44	48	>45=45%	39-49	81%	56
AVERAGES	282	40 MPH	35	41	>40=27%	32-42	75%	50
AVERAGES	278	35 MPH	31	37	>35=31%	26-36	68%	46
AVERAGES	316	30 MPH	23	29	>30=10%	20-30	66%	38


OR217 Active Traffic Management

- Urban expressway
- 135,000 AADT
- Advisory variable speed
- 7.4 miles
- 7 speed subzones
- Subzones tied together to reduce speed in steps
- Goal: improve safety and reliability
- Also has weather responsive

Early Results

Before and After Travel Time Reliability, OR-217 NB Left Lane

- Average Buffer Index before VAS = 48.8%
- Average Buffer Index after VAS = 27.64%
- Before = July 2012 midweek days
- After = Midweek days from the past three weeks

Thank you

Joshua Crain

DKS Associates jvc@dksassociates.com