Agency Practices for Low Visibility Detection and Communication

Leann Koon

Western Transportation Institute – Montana State University

David Veneziano Institute for Transportation - Iowa State University

> 2015 National Rural ITS Conference August 11, 2015

Overview

- Introduction
- Approach
- System summaries
- Conclusions

Introduction

- Visibility reducing events have a safety impact on motorists and require warning.
- Arizona DOT faced with windblown dust issues.
- Agencies have deployed systems and approaches to provide warnings to travelers.
- Specifics related to these systems and approaches remained largely unknown.

Introduction cont'd

- Goal: document information/agencies that used visibility warning systems.
 - Approaches used to provide visibility warning information to drivers.
 - General communications about such events with the public.
- Provide ADOT with a state-of-the-practice summary of how visibility was detected and messages were conveyed to the public.

Approach

- High-level literature review to identify visibility warning systems previously documented.
 - Use this general system information to identify prospective contacts with agencies.
- Conduct telephone interviews to obtain information of interest.
- Contact further staff familiar with the system when applicable.
 - Determine if contacts knew of similar systems at other agencies that should be investigated.

Approach cont'd

- Information of interest:
 - Nature of problem addressed
 - Frequency and scope of problem
 - Approach(es) taken to address problem
 - Overview of the system(s) employed, including system components.
 - Approaches to communications with drivers, other entities and the general public
 - System status

Systems

- 20 systems identified in 16 states
- Addressed fog, smoke, dust, snow
- Various components used visibility sensors, RWIS, message signs, etc.
- Warning universally provided to drivers in the field
 - Some secondary warning provided via web, 511, etc.

Alabama

- I-10 Bay Bridge Fog Warning System
 - Addresses fog on the Bay Bridge in Mobile
 - 8 miles in length
 - Components visibility sensors, RWIS, DMS, Variable Speed Limit (VSL) signs
 - Warning messages posted to DMS, VSL implemented
 - Status = Active

California

- District 10 Fog Warning System
 - Addresses fog, smoke, dust, inclement weather
 - Deployed district wide
 - Components visibility sensors, RWIS, CMS
 - Warning messages posted to CMS, posted to QuickMap website
 - Status = Active

California

- State Route 99 Fog Detection and Warning System
 - Addresses Tule fog (November February)
 - 12 miles in length
 - Components visibility sensors, radar speed sensors, CMS, CCTV
 - Warning messages posted to CMS, website
 - Fog education pamphlet and website also developed.
 - Status = Active

California

- State Route 18 and 138 Visibility Warning System
 - Addresses fog at intersection
 - 400 feet in advance of intersections
 - Components Visibility sensors, DMS
 - Warning messages posted to DMS for low visibility and intersection ahead
 - Status = Active

Florida

- Paynes Prairie Low Visibility Warning System
 - Addresses smoke and fog
 - 2.5 miles in length
 - Components visibility sensors, CCTV,
 Forward Looking Infrared (FLIR) cameras, DMS
 - Warning messages posted to DMS, flashing beacons activated, message posted to 511 and Twitter, warning posted to website, email alerts to trucking companies, staff posted at rest areas
 - Status = Active

Georgia

- I-75 Fog and Smoke Warning System
 - Addresses fog and smoke/smog
 - 14 miles in length
 - Components Fog detectors, loop detectors, CCTV, VMS
 - Warning and speed advisory messages via VMS
 - Status = Active

Idaho

- I-84 Storm Warning System
 - Addresses blowing dust (most common), fog, smoke and blowing snow
 - -40 miles in length
 - Components Visibility sensors, RWIS, DMS, NWS weather forecasts
 - Warning messages via DMS, general warning on website and 511
 - Status = Active

Louisiana

- Reduced Visibility Enhancement System
 - Addressed fog
 - 25 miles in length
 - Components Visibility sensors, RWIS, VSL signs, DMS, CCTV, raised pavement markings/striping
 - Driver warning via DMS, VSL implemented
 - Status = Inactive

Western Tra

Maryland

- I-68 Fog Warning System
 - Addresses fog
 - 20 miles in length
 - Components DMS, weather reports, staff field observations
 - Driver warning via DMS
 - Status = Active

Montana

- I-15 Dust Warning System
 - Addresses alkali dust
 - -1 mile in length
 - Components Infrared sensors, flashing beacons on static signs
 - Driver warning via flashing beacons
 - Status = Active

Nevada

- I-80 Fog-based VSL System
 - Addressed fog
 - -4 miles in length
 - Components RWIS, VSL
 - VSL implemented
 - Status = Inactive

New Jersey

- I-287 Fog Sensor/ITS Integration
 - Addresses fog and hazardous weather
 - Components Visibility sensors, CCTV, RWIS, VMS, pavement temperature and traffic sensors
 - Driver warning and lowered speed limits via VMS
 - Status = Ongoing

New Mexico

- I-10 Dust Control System
 - Addresses dust
 - -1 mile in length
 - Components Visibility sensors, CCTV, speed sensors, RWIS, DMS
 - Advisories or warnings posted to DMS, HAR, 511, website
 - Status = Active

North Carolina

- I-40, I-26 Fog Warning Systems
 - Address fog and snow
 - 17 miles in length
 - Components RWIS, CCTV, flashing beacons
 - Activate flashing beacons on static signs, email alerts to agency staff
 - Status = Active

Pennsylvania

- Route 22 Fog Warning System
 - Addresses fog
 - -4.9 miles in length
 - Components Visibility sensors, VMS, auto dialer, wireless pager technology, CCTV
 - Driver warning via VMS
 - Status = Active

Pennsylvania

- Turnpike Fog Warning System
 - Addresses fog
 - 10 miles in length
 - Components Visibility sensors, CCTV, RWIS, microwave traffic sensors, DMS
 - Driver warning and variable speed limits via DMS, warning on website, smartphone app, and 511
 - Status = Active

Tennessee

- I-75 Fog Warning System
 - Addresses fog
 - 17 miles in length
 - Components Visibility sensors, VSL, radar detectors, HAR, closure gates, flashing beacons, DMS
 - Driver warning via DMS, flashing beacons on static signs, VSL, road closures via TMC staff (graduated response plan)
 - Status = Active

Utah

- I-215 Low Visibility Warning System
 - Addresses Tule fog
 - -1 mile in length
 - Components Visibility sensors, vehicle detectors, DMS
 - Driver warning and speed guidance via DMS
 - Status = Inactive

Virginia

- I-64 Afton Mountain Fog Warning System
 - Addresses fog
 - 8 miles in length
 - Components Visibility sensors, CCTV, RWIS, CMS
 - Driver warning via CMS, driver guidance via in-pavement lighting, message on 511 (graduated response plan)
 - Status = Active

Virginia

- I-77 Fancy Gap Variable Speed Limit System
 - Addresses fog
 - 14 miles in length
 - Components Visibility sensors, VSL, VMS
 - VSL based on conditions, driver warning via VMS
 - Status = Under construction

Lessons Learned

- The human element remains an important part of many systems.
- System components must be regularly maintained.
- Maintenance and replacement costs should be budgeted.
- When an issue is limited to a localized site, less complex systems can meet the needs of an agency.

College of
ENGINEERING

Lessons Learned

- For longer corridors, electronic notification via mechanisms such as a traveler information website may be a preferred option compared to in-field equipment.
- Collect good field data and clearly define the problem before designing and implementing a system.
- Engage key stakeholders.

College of ENGINEERING

Conclusions

- A number of states have deployed or are deploying systems to address visibility conditions.
- Low visibility conditions identified include fog, smoke, dust and blowing snow.
- Visibility sensor use is almost universal.
- Warning provided to drivers in the field.
 - Challenge is warning drivers before they reach the site of concern.

Conclusions cont'd

• Most agencies do not extensively provide warning via other mechanisms.

– When done, it is via web or 511.

• Limited education and outreach activities related to low visibility events.

- "Local residents are aware of them."

• Few evaluations of the impacts of systems on safety have been made to date.

Acknowledgments

- Arizona Department of Transportation
- ADOT Project panel members Dianne Kresich, Tim Tait, Matt Burdick, Garin Groff and Beverly Chenausky
- Sonoma Technologies Stephen Reid and Clinton MacDonald
- Individuals that were interviewed about the various systems

Questions?

Leann Koon Western Transportation Institute Montana State University Phone: (406) 994-1697

Email: leann.koon@coe.montana.edu

College of ENGINEERING