

Outline

- Introduction
 - Background
 - Indecision/dilemma zone
 - D-CS concept
 - Evaluations of D-CS
- High-speed intersection environment
 - Options for protecting decision zone
 - D-CS compared to other options
- D-CS considerations
 - Before/After test results
 - Site criteria for D-CS
- Current D-CS deployment

- Background
 - Previous treatments for high-speed intersections
 - Green extension systems
 - TTI Truck Priority system
 - LHOVRA
 - Green termination systems
 - Self-optimizing signal (SOS) system
 - Detection-Control system
 - TxDOT Research Project "Detection-Control System for Rural High-Speed Intersections"
 - Original research: Sept 1, 2000 Aug 31, 2002
 - Safety and operational considerations

- Indecision/dilemma zone
 - Defined as travel time to stop line (e.g., 2.5-5.5 s)
 - D_{bz}: Begin zone-90% of drivers stop & 10% proceed
 - D_{ez}: End zone-90% of drivers go & 10% stop
 - Trucks vs. non-trucks
 - 2.5-5.5 s non-trucks
 - 2.5-7.5 s trucks

 D_{ex} = distance to the end of the dilemma zone

- D-CS Concept
 - Overcomes multi-point detection limitations
 - Intelligently forecasts best-time-to-end green
 - Vehicle arrival in DZ
 - Speed/type vehicle
 - Conflicting delay
 - Safety objective
 - Reduce crashes
 - Operational objective
 - Minimize delay

- Evaluations of D-CS
 - TxDOT eight sites in Texas
 - Red-light runners
 - Delays/stops
 - Crash history
 - FHWA eight sites in four states
 - Red-light runners
 - Vehicles in indecision zone
 - Phase max-outs
 - Crash history

- Options for protecting indecision zone
 - Single advance detectors
 - Multiple advance detectors
 - Inductive loops
 - Magnetometers
 - Other point detectors
 - Non-intrusive detectors
 - Wavetronix SmartSensor Advance
 - Hybrid detectors by Iteris and FLIR
 - Detection-Control System

- Multiple advance detectors
 - Advantages
 - Well known concept and components
 - Disadvantages
 - Loop failure rates may be high
 - Potential damage from roadside work
 - Exposure to traffic
 - Might not find adequate gap in high demand situations
 - No special consideration for trucks

- Wavetronix Advance (SS-200)
 - Advantages
 - Non-intrusive
 - Simple setup
 - Tracks vehicles in real time
 - Adapts to variations in vehicle speeds
 - Disadvantages
 - Requires bucket truck to install
 - No left- or right-turn detection
 - Does not detect vehicles by lane
 - SS-200 max range is 600 ft from detector
 - Does not distinguish trucks (although SS200E does)

- Detection-Control System
 - Advantages
 - Distinguishes trucks
 - Lane-by-lane detection
 - Adapts to variations in vehicle speeds
 - Considers minor movements directly
 - Forecasts best time to end phase
 - Disadvantages
 - Uses inductive loops (although others could be used)
 - Cost of trenching and wiring
 - Point detection (not continuous)
 - Requires lane closures for installation

Comparison of Wavetronix Advance with D-CS

Wavetronix Advance	Detection-Control System
Non-intrusive	Intrusive (loops, magnetometers)
Tracking (real-time)	Point detection
Area detection	Detection by lane
Classifies 80% of trucks	Classifies 95% of trucks
Requires bucket truck	Requires lane closure
Considers side-street delay indirectly	Considers side-street delay directly
Uncertain of accuracy in high volume	Works well in high speed, high volume
Uncertain of readiness for Conn. Veh.	Connected Vehicle potential
Intersection cost: \$16,090	Intersection cost: \$28,450 to \$51,312

D-CS Impacts—TxDOT Findings

- Red-light violations (10 approaches)
 - All vehicles: 58% reduction overall
 - Heavy vehicles: 80% reduction overall
- Operational measures
 - Overall changes (10 approaches)
 - Reduction in total control delay: -14%
 - Reduction in total vehicles stopping: -9%
- Crashes
 - Overall changes (5 intersections)
 - All vehicles: 39% reduction
 - Overall range from -6% to -64%

D-CS Impacts—FHWA Findings

- Red-light violations (16 approaches)
 - All vehicles: 82% reduction
 - Heavy vehicles not evaluated separately
- Operational measures
 - Max-outs reduced by 63%
 - Vehicles caught in indecision zone reduced by 73%
- Crashes
 - Angle and rear-end crashes
 - Overall reduction 9%
 - Limited sample size

Site Criteria for D-CS

- Isolated full-actuated intersections
- Intersection of major road & minor road
- 85th percentile speed (or speed limit) > 45 mph
- Total turn percentage (right plus left) < 40%
- Truck traffic >10% (off-peak) or >5% (peak)
- Crash rates (rear-end & right angle) > similar local intersections

Current D-CS Deployment Project

Objectives

- Improve safety at rural high speed signalized intersections
- Make D-CS technology available from other signal controller manufacturers
- Develop marketing and training materials in support of D-CS deployment

Current D-CS Deployment Project

- Prioritize Signal Controller Platforms for D-CS Implementation
- Develop Design Specifications
- Develop Verification Plan
- Develop Marketing and Training Material
- Coordinate D-CS Implementation Work

CONTACT INFORMATION

Dan Middleton, Ph.D., P.E.

Texas A&M Transportation Institute

3135 TAMU

2929 Research Parkway

College Station, TX 77843-3135

Phone: (979) 845-7196

Fax: (979) 845-9873

Email: d-middleton@tti.tamu.edu

Wei Zhang, Ph.D., P.E.

Program Manager, Intersection Safety R&D

Office of Safety R&D, HRDS-10

Turner-Fairbanks Highway Research Center

6300 Georgetown Pike

McLean, VA 22101

Phone: (202) 493-3317

Email: Wei.Zhang@fhwa.dot.gov

