USING DETECTION-CONTROL SYSTEM (D-CS) TO IMPROVE SIGNALIZED INTERSECTION SAFETY

Dan Middleton, Ph.D., P.E.
Texas A&M Transportation Institute
And
Wei Zhang, Ph.D., P.E.
Office of Safety R&D
Federal Highway Administration
Outline

- **Introduction**
 - Background
 - Indecision/dilemma zone
 - D-CS concept
 - Evaluations of D-CS

- **High-speed intersection environment**
 - Options for protecting decision zone
 - D-CS compared to other options

- **D-CS considerations**
 - Before/After test results
 - Site criteria for D-CS

- **Current D-CS deployment**
Introduction

- Background
 - Previous treatments for high-speed intersections
 - Green extension systems
 - TTI Truck Priority system
 - LHOVRA
 - Green termination systems
 - Self-optimizing signal (SOS) system
 - Detection-Control system
 - TxDOT Research Project “Detection-Control System for Rural High-Speed Intersections”
 - Original research: Sept 1, 2000 - Aug 31, 2002
 - Safety and operational considerations
Introduction

- Indecision/dilemma zone
 - Defined as travel time to stop line (e.g., 2.5-5.5 s)
 - D_{bz}: Begin zone-90% of drivers stop & 10% proceed
 - D_{ez}: End zone-90% of drivers go & 10% stop
 - Trucks vs. non-trucks
 - 2.5-5.5 s non-trucks
 - 2.5-7.5 s trucks

D_{bz} = distance to the beginning of the dilemma zone
D_{ez} = distance to the end of the dilemma zone
Introduction

- **D-CS Concept**
 - Overcomes multi-point detection limitations
 - Intelligently forecasts best-time-to-end green
 - Vehicle arrival in DZ
 - Speed/type vehicle
 - Conflicting delay
 - Safety objective
 - Reduce crashes
 - Operational objective
 - Minimize delay
Introduction

- Evaluations of D-CS
 - TxDOT – eight sites in Texas
 - Red-light runners
 - Delays/stops
 - Crash history
 - FHWA – eight sites in four states
 - Red-light runners
 - Vehicles in indecision zone
 - Phase max-outs
 - Crash history
High-Speed Intersection Environment

- Options for protecting indecision zone
 - Single advance detectors
 - Multiple advance detectors
 - Inductive loops
 - Magnetometers
 - Other point detectors
 - Non-intrusive detectors
 - Wavetronix SmartSensor Advance
 - Hybrid detectors by Iteris and FLIR
 - Detection-Control System
High-Speed Intersection Environment

- Multiple advance detectors
 - Advantages
 - Well known concept and components
 - Disadvantages
 - Loop failure rates may be high
 - Potential damage from roadside work
 - Exposure to traffic
 - Might not find adequate gap in high demand situations
 - No special consideration for trucks
High-Speed Intersection Environment

- Wavetronix Advance (SS-200)
 - Advantages
 - Non-intrusive
 - Simple setup
 - Tracks vehicles in real time
 - Adapts to variations in vehicle speeds
 - Disadvantages
 - Requires bucket truck to install
 - No left- or right-turn detection
 - Does not detect vehicles by lane
 - SS-200 max range is 600 ft from detector
 - Does not distinguish trucks (although SS200E does)
High-Speed Intersection Environment

- Detection-Control System
 - Advantages
 - Distinguishes trucks
 - Lane-by-lane detection
 - Adapts to variations in vehicle speeds
 - Considers minor movements directly
 - Forecasts best time to end phase
 - Disadvantages
 - Uses inductive loops (although others could be used)
 - Cost of trenching and wiring
 - Point detection (not continuous)
 - Requires lane closures for installation
Comparison of Wavetronix Advance with D-CS

<table>
<thead>
<tr>
<th>Wavetronix Advance</th>
<th>Detection-Control System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-intrusive</td>
<td>Intrusive (loops, magnetometers)</td>
</tr>
<tr>
<td>Tracking (real-time)</td>
<td>Point detection</td>
</tr>
<tr>
<td>Area detection</td>
<td>Detection by lane</td>
</tr>
<tr>
<td>Classifies 80% of trucks</td>
<td>Classifies 95% of trucks</td>
</tr>
<tr>
<td>Requires bucket truck</td>
<td>Requires lane closure</td>
</tr>
<tr>
<td>Considers side-street delay indirectly</td>
<td>Considers side-street delay directly</td>
</tr>
<tr>
<td>Uncertain of accuracy in high volume</td>
<td>Works well in high speed, high volume</td>
</tr>
<tr>
<td>Uncertain of readiness for Conn. Veh.</td>
<td>Connected Vehicle potential</td>
</tr>
<tr>
<td>Intersection cost: $16,090</td>
<td>Intersection cost: $28,450 to $51,312</td>
</tr>
</tbody>
</table>

Notes:
- Non-intrusive: Does not require physical changes to the road.
- Tracking (real-time): Monitors vehicles in real-time.
- Area detection: Monitors large areas for traffic.
- Classifies 80% of trucks: Identifies 80% of trucks on the road.
- Considers side-street delay indirectly: Accounts for delays on side streets indirectly.
- Intersection cost: $16,090 to $51,312: Range of intersection installation costs.
D-CS Impacts—TxDOT Findings

- Red-light violations (10 approaches)
 - All vehicles: 58% reduction overall
 - Heavy vehicles: 80% reduction overall

- Operational measures
 - Overall changes (10 approaches)
 - Reduction in total control delay: -14%
 - Reduction in total vehicles stopping: -9%

- Crashes
 - Overall changes (5 intersections)
 - All vehicles: 39% reduction
 - Overall range from -6% to -64%
D-CS Impacts—FHWA Findings

- Red-light violations (16 approaches)
 - All vehicles: 82% reduction
 - Heavy vehicles not evaluated separately
- Operational measures
 - Max-outs reduced by 63%
 - Vehicles caught in indecision zone reduced by 73%
- Crashes
 - Angle and rear-end crashes
 - Overall reduction 9%
 - Limited sample size
Site Criteria for D-CS

- Isolated full-actuated intersections
- Intersection of major road & minor road
- 85th percentile speed (or speed limit) > 45 mph
- Total turn percentage (right plus left) < 40%
- Truck traffic > 10\% (off-peak) or > 5\% (peak)
- Crash rates (rear-end & right angle) > similar local intersections
Current D-CS Deployment Project

- Objectives
 - Improve safety at rural high speed signalized intersections
 - Make D-CS technology available from other signal controller manufacturers
 - Develop marketing and training materials in support of D-CS deployment
Current D-CS Deployment Project

- Prioritize Signal Controller Platforms for D-CS Implementation
- Develop Design Specifications
- Develop Verification Plan
- Develop Marketing and Training Material
- Coordinate D-CS Implementation Work
CONTACT INFORMATION

Dan Middleton, Ph.D., P.E.
Texas A&M Transportation Institute
3135 TAMU
2929 Research Parkway
College Station, TX 77843-3135
Phone: (979) 845-7196
Fax: (979) 845-9873
Email: d-middleton@tti.tamu.edu

Wei Zhang, Ph.D., P.E.
Program Manager, Intersection Safety R&D
Office of Safety R&D, HRDS-10
Turner-Fairbanks Highway Research Center
6300 Georgetown Pike
McLean, VA 22101
Phone: (202) 493-3317
Email: Wei.Zhang@fhwa.dot.gov