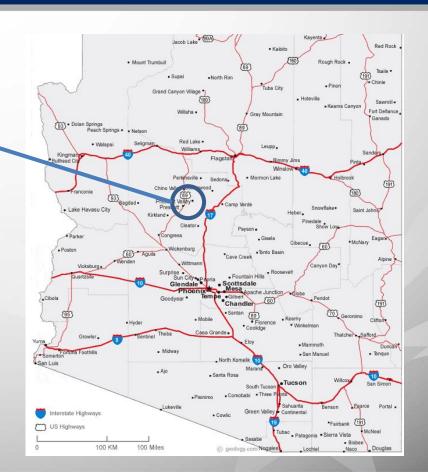


TSM&O Signal Upgrades in Rural Communities October 2018


Rural Signals

Prescott and Prescott Valley
Semi-rural, isolated communities

- 30+ miles from major interstate
- Travel time of 40+ minutes

Population is growing

- Third largest in State behind Phoenix and Tucson
- 220,000 people (double 1990)

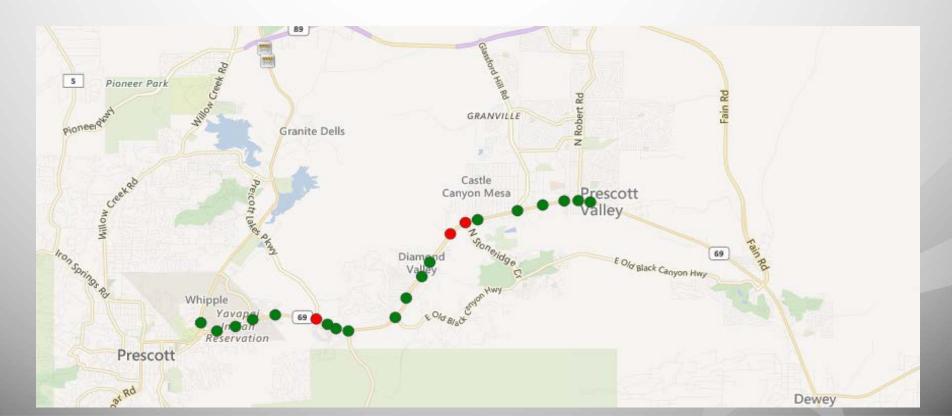
SR 69 Corridor

20 signals over 8.5 miles

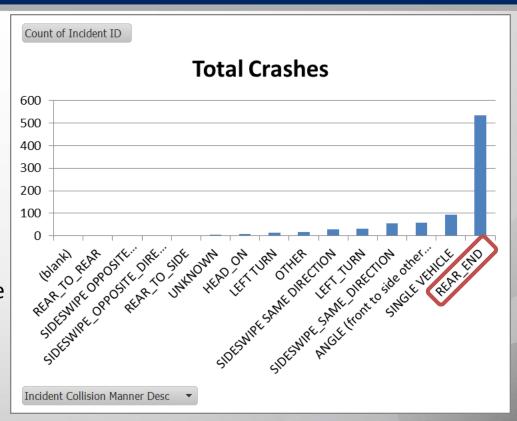
Average spacing: 0.45 mi

Shortest spacing: 0.18 mi

Longest spacing: 0.98 mi


25,000 - 40,000 ADT

2 Lanes/direction: 5.5 mi (65%) 3 lanes/direction: 3.0 mi (35%)


SR 69 Corridor

Issues

- Significant queuing and back-ups
 - Travel time upwards of 25 min
 - Customer complaints
- Crashes increasing annually
 - 197 (2015) to 250 (2017)
 - 13% annualized increase
 - Majority (89%) are multi-vehicle

Causes

- Population growth
 - Increase in volumes, limited street network
- Older signal equipment
 - TS1 controllers, inductive loops
- Outdated coordination plans
 - 10-years old, clock-based
- Access control
- Driver behavior

Solution

Improve Individual Signals

- Upgrade controllers
- Replace detection

Improve Corridor Operations

- Interconnect signals
- Utilize traffic management software
- Improve timing plans

Measure Performance

- Install ARID devices
- Install PTZ cameras

Improve Individual Signals

Update controllers

- Replace TS1 controllers with TS2 controllers
 - Programmable features
 - Flexibility with future add-ons
- Continue use of existing TS1 cabinets
 - Cost savings

Replace detection

- Replace loops/video with radar
 - Increased flexibility
 - Presence and advanced detection

Improve Corridor Operations

Interconnect signals

- Direct connect fiber
 - 8 signals on east end
- Point-to-point radio
 - Three groups of 4 signals
 - Wireless modems to backhaul

Utilize traffic management software

- Centralized control
 - Online, accessible
- Manage remotely
 - Troubleshoot live or by record
- Systems approach on timing plans

Measure Performance

Install ARID devices

- 9 Wi-Fi locations
- Travel time and average speed
- Data for entire "trip"

Install PTZ cameras

- 6 cameras in corridor
 - Busiest intersections
- Visual verification

Installation

Internal forces

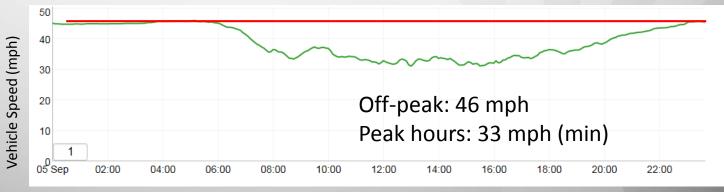
- Controllers
- Radios
- Fiber

Contractor

- Detection (radar)
- PTZ cameras

Total Cost = \$1M

Work Item	Cost
Signal controllers	\$ 90,000
Detection (radar)	\$ 700,000
Cameras/radios	\$ 97,000
ARID devices	\$ 34,000
Software license	\$ 21,000
Fiber, switches, etc	\$ 14,000
Total Cost	\$ 956,000

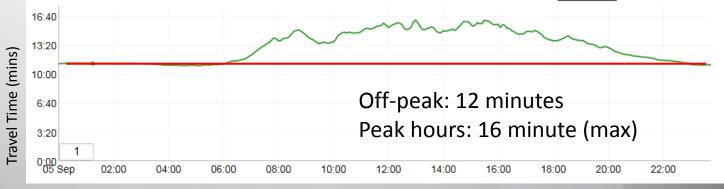


Results - Speed

Significant improvement

- Removal of queues
- Increased platoons
- No peak hour degradation

Driver behavior ++


Results – Travel Time

Significant improvement

- 20-25 minute base condition
- 5-10 minute savings/direction

Time-value benefit = \$13.5 M/year based on time savings

B/C of 70.5

Thank you