Phased Development of the Automated Demand Response Feeder Transit System in Rural Areas

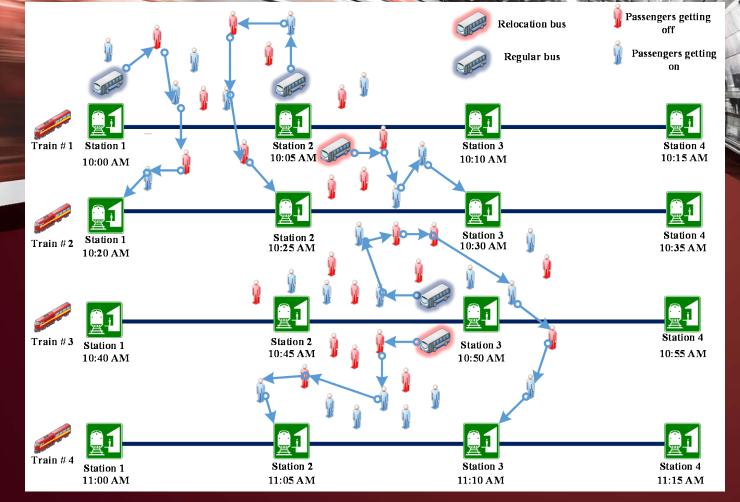
Young-Jae Lee, Ph.D.

Associate Professor Morgan State University

Amirreza Nickkar

Doctoral Student in Transportation and Urban Infrastructure Systems

Morgan State University



• Once automated vehicles become available:

- Small-sized flexible door-to-door feeder bus operation will become more realistic
- Users' travel behaviors and modal choices will become completely different

- Innovations of proposed automated demand-responsive feeder bus transit system:
 - Considering relocation of feeder buses for multi-stations
 - Considering individual passengers' travel times

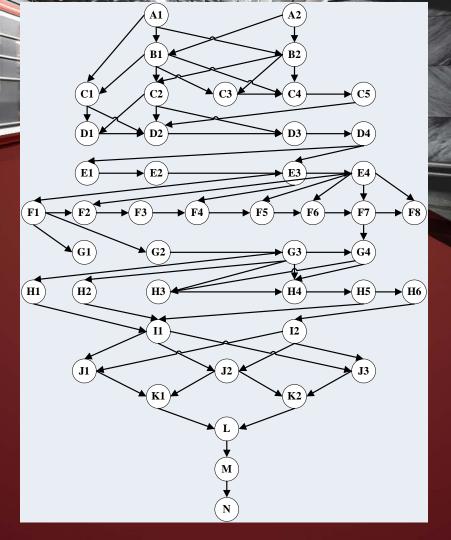
Conceptual operation of feeder transit (regular and relocation buses)

Objectives of the research:

- Suggesting a practical framework for phasing an Automated Demand-Responsive Feeder Transit (ADRFT) service project
- Solving a Resource Constrained Project Scheduling Problem (RCPSP) by using Simulated Annealing (SA) algorithm for construction phases of an automated feeder transit system for suburban and rural areas
- Finding out the importance of each phases by conducting a sensitivity analysis

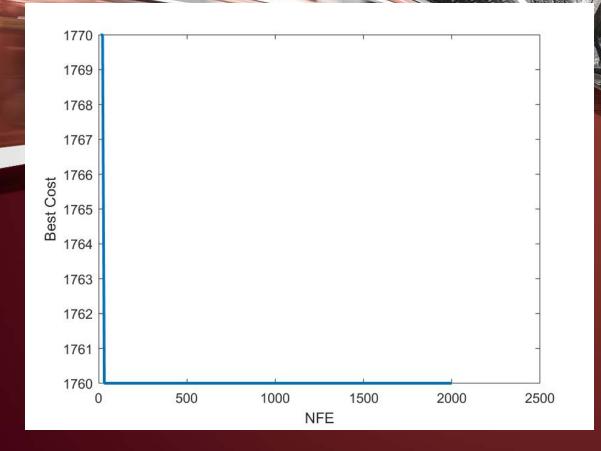
Activity and time data for the project

Code	Major Tasks	Minor Tasks	Time units	Prerequisite
A1	Reviewing Regional ITS	Primary studies	45	
A2	Architecture	Reviewing upstream plans/projects	30	
B1		Feasibility studies	65	A1, A2
B2	Concept Exploration	Primary cost and benefit estimations and related administartive processes	70	A1, A2
C1	Feasibility Study	System Engineering & ConOps	60	A1, A2
C2		Setting MOEs	70	A1, A2
C3		Detailed Benefits study	50	B1, B2
C4		Detailed Benefits implementation period	55	B1, B2
C5		Connected Automated Vehicle (CAV) procurement	50	C3, C4

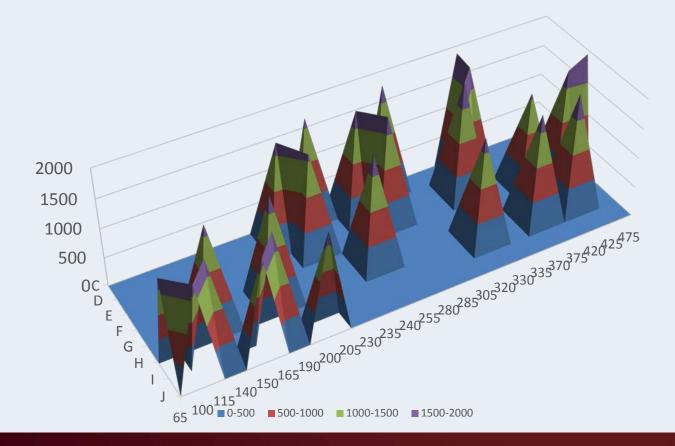


Code	Major Tasks	Minor Tasks	Time units	Prerequisite
G1	Hardware and Software Purchasement	Communication devices between buses and servers	55	F1
G2		Producing required hardware stuff	45	F1
G3		On-board navigation and routing units	50	G1, G2
G4		NFC device to check passengers	40	G1, G2
H1	Hardware Installment and Procurement	Installing ITS devices in buses	65	G3, G4
H2		Installing communication device	70	G3, G4
H3		Installing app	65	G3, G4
H4		Installing NFC device to check passengers	55	G3, G4
H5		Setting up sever database	55	H1, H2, H3, H4
Н6		Installing securing, monitoring and controling infrastructures	60	H1, H2, H3, H4
11	Hardware and Softwar	Configuring Apps and server database	65	H5, H6
12	Configurartion	Configuring wireless network infrastructure	50	H5, H6

Code	Major Tasks	Minor Tasks	Time units	Prerequisite
J1		Testing App	50	1, 2
J2		Testing feeder bus	50	11,12
13	ç	Testing controling and managining system	50	11,12
K1		Training dispatchers	40	J1,J2,J3
К2	Training and finalizing human-base	Training repairers	40	J1,J2,J4
	Subsystem Integration and Verification		65	K1,K2
IVI	Initial System Deployment and System Validation		75	М
N	System Validation		85	N


Activity Precedence (AON) Diagram

Conceptual formulation for the RCPSP


Min S_n

Subject to $S_i + d \le S_j$ $S_j \ge \max{FT_j \mid i \bigcirc PL_j}$ $S_j \oslash int^+$

Objective function value vs SA iteration

Sensitivity Analys

Results:

- We suggested a framework for phasing an automated demand-responsive feeder bus transit system
- A RCPSP has been solved successfully for suggested transit system in rural areas
- Two phases of "Software Requirements in High-Level Design" and "Hardware and Software Purchasement" have shown more sensitivity to time variations

Thank you

Question?