MIDAS: Proactive Traffic Control System for Diamond Interchanges

Viswanath Potluri1

Pitu Mirchandani1

1Arizona State University, School of Computing, Informatics and Decision Systems Engineering

2Arizona State University, School of Sustainable Engineering, and the Built Environment
What is MIDAS?

Managing Interacting Demand And Supply

Demand

Supply
A Note on Control Systems

• Classification of control systems
 – Open Loop
 – Closed Loop (defined by feedback path)

• Open Loop
 – In open loop control systems, output is not fed-back to the input. So, the control action is independent of the desired output.
 – Fixed time signal control.

• Closed Loop
 – In closed loop control systems, output is fed back to the input. So, the control action is dependent on the desired output.
 – Actuated signal control & adaptive traffic control systems.
Adaptive Control System

- Proactive
- Reactive
Open-loop vs Reactive vs Proactive

- Actual Trajectory
- Reactive
- Open Loop
- Proactive
General Proactive Control Architecture
Measurements

• Eulerian Measurements
 – Data collected at a fixed point in space, also called point detectors.
 – Inductive loop detectors, video detectors, etc.
 – They give traffic counts and approximate vehicle speeds.

• Lagrangian Measurements
 – Data collected from mobile detectors that move with flow of traffic.
 – Cell phones, GPS-based locator, etc.
 – They give travel times, vehicle trajectories, speeds, etc.

• MIDAS uses Lagrangian measurements.
MIDAS for Diamond Interchanges

- Signal control of two closely spaced intersections at diamond interchange faces following challenges
 - Complicated traffic movements
 - Phase overlaps
 - Limited inter storage capacity for queued vehicles
 - Fluctuating demand and heavy off-ramp traffic
MIDAS Prediction & Control; Arterial

- PREDICT
- TURNING RATIOS
- TRAVEL TIMES
- DISCHARGE RATES
- ESTIMATION MODELS
- DATA STREAMING (GPS)

Arrivals & Queues → Control Algorithms

State of traffic network
MIDAS Signal Control Algorithm

- MIDAS employs efficient Dynamic Programming (DP) approach to optimize traffic movements at the intersection, at a lane level resolution.
- Determines optimal phase sequence & duration of phases.
- Totally cycle free control strategy.
- Employs forward recursion DP approach to solve and backward recursion to retrieve optimal phase schedule.
- Flexible enough to optimize user defined performance measure, like stops, delays and queues, etc. over a finite time horizon that rolls forward.
MIDAS Signal Control Algorithm

- Decision variable: x_j (Phase duration of stage j)
- Stage: Phase j
- State variable: s_j (time horizon with stage j)
- Incremental value of objective function: $f(s_j, x_j)$
- Cumulative value of objective function: $V_{j-1}(s_{j-1})$
- $V_j(s_j) = \min \{ f(s_j, x_j) + V_{j-1}(s_{j-1}), \forall x_j \in X_j \}$
Diamond Interchange DP Solution Example

Possible Phase Combination

phase duration
VISSIM Network Simulation

- I-17 & 19th Ave., Phoenix, AZ
Evaluation

• RHODES
 – A predecessor to MIDAS
• Optimal Fixed Time Control (OFTC)
 – VISSIM stage based optimization algorithm
 – Sequence of simulation runs performed to determine best signal program.
 – Signal program is constructed by modifying green times of best & worst stage.
 – The stage with the lowest maximum average delay is selected as the best stage.
 – The stage with the highest maximum average delay is selected as the worst stage.
Performance Metrics

• Delay Average
 – Average of all vehicle delays due to presence of signal controller in their path when compared to free flow, without any signal control.

• Total Delay
 – Sum of all vehicle delays in network, in seconds.

• Stops Average
 – Average number of stops made by a vehicle.

• Average Queue Length
 – Average queue length at any given movement at the stop line of the interchange.

• Total Travel Times
 – Sum of travel times of all vehicles in the network, in seconds.
Results

Network Level Performance

<table>
<thead>
<tr>
<th>SC</th>
<th>SimTime(s)</th>
<th>TrafficLoad</th>
<th>DelayAvg(s)</th>
<th>TotalDelay(s)</th>
<th>TotalTravelTime(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDAS</td>
<td>3600</td>
<td>4900</td>
<td>13.25</td>
<td>66235.87</td>
<td>414791</td>
</tr>
<tr>
<td>RHODES</td>
<td>3600</td>
<td>4900</td>
<td>14.5</td>
<td>72472.17</td>
<td>421109</td>
</tr>
<tr>
<td>OFTC</td>
<td>3600</td>
<td>4900</td>
<td>32.05</td>
<td>160218.469</td>
<td>467528</td>
</tr>
</tbody>
</table>

Intersection Level Performance

<table>
<thead>
<tr>
<th>SC</th>
<th>SimTime(s)</th>
<th>TrafficLoad</th>
<th>DelayAvg(s)</th>
<th>StopsAvg(s)</th>
<th>TotalStops(s)</th>
<th>AvgQLEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDAS</td>
<td>3600</td>
<td>4900</td>
<td>11.5</td>
<td>0.68</td>
<td>3337</td>
<td>2.47</td>
</tr>
<tr>
<td>RHODES</td>
<td>3600</td>
<td>4900</td>
<td>12.9612188</td>
<td>0.807825565</td>
<td>3964</td>
<td>2.74718738</td>
</tr>
<tr>
<td>OFTC</td>
<td>3600</td>
<td>4900</td>
<td>25.74</td>
<td>1.01</td>
<td>5902</td>
<td>18.23</td>
</tr>
</tbody>
</table>
Average Delay vs Traffic Load

Average Delay (Secs) vs Traffic Load (Veh/Hr)

- **Midas**: 14.63, 30, 20.3, 31.51, 24.68, 38, 65.69
- **Rhodes**: 15.8, 16.93, 1472, 30, 31.51, 38, 70.4
- **OFC**: 4500, 4800, 5100, 5400, 5700, 6000, 6300, 6600, 6900, 7200

Data Points:
- Rhodes: 15.8, 16.93, 1472, 30, 31.51, 38, 70.4
- OFC: 4500, 4800, 5100, 5400, 5700, 6000, 6300, 6600, 6900, 7200

Graph Elements:
- **X-axis**: Traffic Load (Veh/Hr)
- **Y-axis**: Average Delay (Secs)
- **Lines**:
 - Midas: Blue
 - Rhodes: Red
 - OFC: Green
Average Stops vs Traffic Load
Average Queue Length vs Traffic Load

Traffic Load (Veh/Hr)

Avg. Queue Length

midas
rhodes
oftc
References

- Brent A. Cain, ADOT. I-17 & 19th AVE. Proactive traffic control of diamond interchange project.
Thank You