NEW YORK CITY
CONNECTED VEHICLE
PILOT PROJECT

Bob Rausch, P.E.
Vice President
Transcore
New York City is aggressively pursuing “Vision Zero”
“Traffic Death and Injury on City streets is not acceptable”
Vision Zero Goal: to eliminate traffic deaths by 2024

NYC CV Pilot will evaluate

- Safety benefits of CV technology
- Address CV deployment challenges
 - With a large number of vehicles & types
 - Issues associated with the dense urban environment
V2I applications work where **infrastructure is installed** (along highlighted streets).

V2V applications work **wherever** equipped vehicles encounter one another.

The CV project leverages the City’s transportation investments.

Advanced Traffic Controller (ATC)

NYCWiN

Traffic Control System

LOCATIONS (MANHATTAN, BROOKLYN)
Vehicles
- Up to 8,000 fleet vehicles with Aftermarket Safety Devices (ASDs):
 - ~5,800 Taxis (Yellow Cabs)
 - ~ 700 MTA Buses
 - ~ 1,050 Sanitation & DOT vehicles
 - ~ 400 DCAS vehicles

Pedestrians
- Pedestrian PIDs
 - Visually Impaired
 - 100 Subjects – PID
- PED in Crosswalk
 - 10 Fully Instrumented Int.

Operating Statistics:
- Vehicles are in motion or active ~14 hours per day!
- Average taxi drives 197 miles per day
- Fleet total Vehicle Miles Traveled:
 - >1.3 Million Miles per day
 - ~40 Million Miles per month
SAFETY APPLICATIONS

Vehicle-to-Vehicle (V2V) Safety Applications
- Vehicle Turning Right in Front of Bus Warning
- Forward Collision Warning
- Emergency Electronic Brake Light
- Blind Spot Warning
- Lane Change Warning/Assist
- Intersection Movement Assist

Vehicle-to-Infrastructure (V2I) Safety Applications
- Red Light Violation Warning
- Speed Compliance
- Curve Speed Compliance
- Speed Compliance/Work Zone
- Oversize Vehicle Compliance
 - Prohibited Facilities (Parkways)
 - Over Height
- Emergency Communications and Evacuation Information (Traveler Information)
ADDITIONAL APPLICATIONS

Pedestrian
- Mobile [Visually Impaired] Ped Signal System – *navigation assistance*
- Pedestrian in Signalized Intersection Warning – *to vehicles*

Traffic Management
- CV Data for Intelligent Traffic Signal System

 Roadway segment travel times

Operations, Maintenance, and Performance Analysis
- RF Monitoring
- OTA Firmware Update
- Parameter Up/Down Loading
- Traffic data collection
- Event History Recording
- Event History Up Load

To Evaluate the benefits
Where are we now?
PROTOTYPE INSTALLATION AND TESTING

- Developing MAP message Content (USDOT tool)
- RSU - Planning installation sites
 - Establishing Installation “partners”
 - Optimizing for triangulation and location accuracy testing
- ASD - Developing vehicle installation kit designs
 - Working with vendors – NY Specific Software
 - Working with Fleet owners – Establish installation procedures
 - Running samples – awaiting prototypes – checking coverage and interference

~360 Roadside Units
36 Units at key locations
Vehicle Installation

- 80 Samples installed in fleet vehicle
- Testing through the glass and drilled mountings
- Working with various different vehicle types
- Verifying calibration and RF radiation patterns
NYC DOT INSTALLATIONS

- NYC DOT Installation
 - Various Makes/Models/Year NYC DOT vehicles are being equipped with prototype ASDs in order to fine tune and optimize installation methods and approaches
 - NYC DOT Vehicles 770
 - Toyota
 - Prius, RAV4
 - Ford
 - Fusion
 - F-150 – F-550
 - Chevrolet
 - Silverado
 - HD3500
 - Economy
The buses were installed to test RF DSRC communication with light vehicles, and to develop an installation template.

Key element for MTA – Through the glass Antenna
Taxi Installations are estimated at 5000 vehicles between the participating fleet owners

- 2 authorized technology installers
- Taxi fleet is expected to include:
 - Toyota
 - Prius
 - Sienna
 - RAV4
 - Nissan NV 200
Some Lessons Learned
and Challenges
Pilot vs. Deployment

- Ambiguities within the standards
 - Need for “how to use” in many cases!
 - Complexity of deploying the security (1609.2) is significant
 - Protocols & Data elements must be the same for interoperability
- Three pilots worked together
 - Review of all standards
 - insure same “objects” for the same purpose and meaning
 - Requirements for messages all the same
 - Optional vs. Mandatory
- Product certification (US DOT Requirement) – OmniAir and their program
 - Trusted devices - - protect the integrity of the trusted environment
 - Fundamentals – messages, channel usage, security usage, timing, etc.

Interoperable Incremental Deployment
Need Standards for the Applications

- “Demonstrations” by 6 vendors
 - Fundamental operation ~same
 - **BUT** – Differences
 - Configuration management
 - Operating parameter management
 - “Intensity” of application
 - “Need for ability to test applications
 - Controlled environment
 - Need “testable” requirements for applications – Precision!

- Need more extensive “**certification**” that applications meet some minimum?
CYBERSECURITY IS FUNDAMENTAL TO CV DEPLOYMENT

CV depends on a “trusted” environment - vehicles & infrastructure

- Message authentication (BSM, SPaT, MAP, TIM, etc…)
- Data encryption of (To preserve privacy)

- Requires Equipment Certification
- Organizational IT security
 - Physical security of the TMC systems
 - Agency login and security practices

- Protection for all connections and data exchanges – need to Secure
 - TMC-ATC, ATC-RSU, TMC-RSU - - DTLS with X.509 Certificates

- CV Hardware Impact
 - Hardware Security Module (HSM) for the TMC system
 - HSM inside the ASD/OBU and RSU
SECURITY ISSUES – EXTEND EVERYWHERE

Connected Vehicle has security requirements – well defined and standards

- **Issue**
 - All of the ITS and IT systems need to adjust operations
 - Classic ITS – adopted security measures
 - Certificate management
 - Certificate Revocation Lists
 - Need for real time access to SCMS
 - Secure Boot of all field devices
 - OBU, RSU - Traffic Controller?
 - Physical security re-visited (cabinet keys)
 - Password policies
 - Firewall rules - etc.
 - Misbehavior detection coming soon!

<table>
<thead>
<tr>
<th>Item</th>
<th>Connection Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TMC Pass Through (random as needed)</td>
</tr>
<tr>
<td>0</td>
<td>TMC Controlled Push or Pull (long periods)</td>
</tr>
<tr>
<td>0</td>
<td>E-mail or File Transfer (infrequent)</td>
</tr>
<tr>
<td>0</td>
<td>Planned for Future</td>
</tr>
<tr>
<td>0</td>
<td>TMC Pull (hourly)</td>
</tr>
</tbody>
</table>

Connection Diagram for NYC CV Pilot System

Filename: NYC CVPD Connections IPv6-I Pv4_v2.vsd
SCALEABLE AND RELIABLE DEPLOYMENT

- 100 vehicles – no problem
- 8,000 revenue generating vehicles
 - Cannot physically access - $$$ per minute/hour etc.
 - Project specifications stressed reliability and un-manned recovery
 - Work with the “experts” for installation
- Applications subject to changes
 - Schedule cannot wait until everything is “perfect”
 - 23 weeks to deploy
 - Needed reliable means to update and add applications
 - Needed reliable means to “tune” the applications
 - Likely future changes in communications media and standards
Push (20 MB+) software updates to 8,000 vehicles efficiently over DSRC

- No WiFi and No LTE/4G

Developed Scheme to support broadcast updates

- ASD’s read WSA from Control Channel
- Directed to Service Channel if RSU supports Updates
- RSU broadcasts available updates
 - Some updates broadcast (continuous) some available by unicast
 - Vehicles initiate update using unicast or monitor broadcast streams
 - Using licensed software to manage the efficient breakdown and assembly
 - Efficient Channel Use
 - Privacy is maintained
CHALLENGE – LOCATION ACCURACY

- Location Accuracy –
 - Urban Canyons pose issues *(both relative V2V and absolute V2I)*
 - Dropout at underpasses
 - Loss of GPS lock
 - ASD vendor demonstrated RSU triangulation
 - Established Compound ASD requirements:
 - Dead reckoning,
 - Triangulation with static DSRC locations,
 - Map matching,
 - Tethered to the vehicle - vehicle interface
 - Testing is ongoing 10 RSU’s worst locations
RSU TRIANGULATION

V2X Locate uses

- standard RSUs and OBUs
- standard V2X over the air messages to determine position of vehicle by ranging

RSU location known — Requires High Accuracy! thanks to standard advertisements

Fuses vehicle sensors and GNSS when available.

* Based on recommended deployment set-up
OTHER TECHNICAL CHALLENGES

- Adjusting the applications for 25 MPH and Freeway speeds

- CAN/J (vehicle) Bus Interface –
 - Vendor (OEM) resistance to providing necessary information
 - Purchasing a gateway device

- Many different vehicle types and model years
 - Varied installation kits
 - Fortunately – they are fleets – we drill holes! – and - - -
 - Agency can establish terms and conditions of support!
FLEETS VS. OEMs

- There is a need for standard [secure] vehicle interface
 - Steering Wheel Angle, Yaw Rates, “hard breaking”
 - Speed, roadway friction, etc.
- Aftermarket devices NEED access to the vehicle data bus
 - Speed, directional, minimum – location enhancement
 - Transitional period to embedder safety systems
- Instead – OEMs reacting to “security” scares – making it harder!
- Future: CV can augment AV –
 - Regulations, Intersection operation, Map Dynamics (lane changes, construction, crash/incident/special event mitigation
- NYC – vehicle manufacturer cooperation (data interface and design sharing) – non existent!
- 2 Vendors – 2 different approaches – headache for everyone!
DATA RECORDING ISSUES

NYC was not an R&D project!

What to collect

- What could I collect?
 - What is the raw data available
- What Do I need?
 - What is the intended use of the data?
- What should I collect?
 - To Justify the costs!

What are the costs

- Backhaul communications
- Storage
- Processing
- FOIA requests
- Subpoena

Privacy Issues

- Prohibition of keeping PII
- Combination with other sources.
- Data Ownership
EXAMPLE – TRAVEL TIME

- Block Spacing ~70M Feet (230’)
- 20 MPH – 30 feet per second
- DSRC Range ~300M (1000’)
- BSMs Xmit @ 10 Hz
- Time between blocks ~8 seconds
- BSMs transmitted 80
- BSMs needed 2 - 3% a 97% reduction

Edge computing @ RSU

- RSU looks for vehicle entry to Intersection
- Transmits one BSM to TMC per vehicle
- TMC matches BSM – Vehicle ID
- TMC computes travel time
- Or TMC data times out - -
OPTIMIZED INTERSECTION CONTROL

- Edge computing @ traffic controller
 - Queue length - Stopped Vehicles
 - Vehicle speeds – Reported in local BSM
 - Priority and preemption – With local communications
 - Incident detection – deviation around obstacle
 - Pedestrian presence

- Send to TMC only what needs to be used
 - Platoon management (Freight priority)
 - Alternate route management/diversion
 - Incident detection
 - Travel Times (average link speed)
 - EVP progress (if not provided directly by the vehicle)
1.2 M vehicles in NYC broadcast **83 TB/day**

13,000 NYC intersections broadcast **3 TB/Day** SPaT & Map

8,000 vehicles collect **2 TB BSM data/day**

Data **needed** for benefits analysis:

- How many crashes per day did we prevent
- How many crashes per day did we mitigate

Edge computing – Onboard Unit (OBU)

- OBU monitors vehicle operation (S, Yaw, etc.)
- OBU monitors surrounding vehicles’ operation
- OBU assesses threats
- OBU alerts driver to mitigate threat
- OBU records what the caused alert and driver actions
“Alert” triggers and event record data collection

All of the data collected during T_b is transferred to the event record, and after the trigger the data is collected and added to the record until T_b expires.
DATA REDUCTION AND PRIVACY PROTECTION

Magnitude of Data

- Instead of 2 TB – only 116 GB per day
 - 17 times less – and more useful detail (@4 events/hour)
 - Includes SPaT and MAP information
 - @1 event / hour / vehicle = 29 GB/day or 67x reduction!

Privacy Concern

- If BSM data were to be collected - -
 - Provides vehicle locations at 0.1 second intervals
 - Time-of-day Stamped to 0.1 second accuracy
 - Police Records indicate “final position” of vehicles and time of day
 - CV data could be used to recreate the accident scene
- Even though CV vehicle ID is randomly changed – the raw data can be tracked to an individual vehicle
Obfuscation of OBU Action Logs

- Obfuscation process to scrub precise time and location data
 - Relative details retained
 - Non-obfuscated data will be destroyed following the obfuscation process
OTHER EXAMPLES – OPERATIONS DATA

- **RF Data – Proactive Analysis**
 - Records first and Last BSM heard from each OBU
 - Time-out to find dropouts
 - At 1000 ft. vehicle “hears” RSU for 50 seconds
 - Actual BSMs from that vehicle – 500
 - Assuming 4 dropouts – actual BSMs needed – 8 or 2%
 - Edge computing RSU – monitor OBU keep first/last
 - Same for OBU – 98% bandwidth reduction!
 - Only 8 BSMs actually captured

- **Guess who I saw today**
 - Track other OBUs seen throughout the City
 - Approximately 2 bytes per encounter
The CV technology *could* make “mountains of data” available – but there is a cost

- DSRC Channel time
- Cellular media monthly limitations
- Processing and storage
- Retrieval (FOIA) & Subpoena

NYC pilot deployment project

- Tailored data collection to meet needs
- Concept is to distribute processing to the edge
- Added RSU locations to collect data

NYC System – DSRC only V2I
Bob Rausch
Vice President, TransCore
Robert.Rausch@transcore.com
Contacts for CV Pilots Program/Site AORs:

- Kate Hartman, Program Manager, Wyoming DOT Site AOR; Kate.Hartman@dot.gov
- Jonathan Walker, NYCDOT Site AOR; Jonathan.b.Walker@dot.gov
- Govind Vadakpat, Tampa (THEA) Site AOR; G.Vadakpat@dot.gov
- Walter During, Evaluation COR, Walter.During@dot.gov

Visit CV Pilot and Pilot Site Websites for More Information:

- CV Pilots Program: http://www.its.dot.gov/pilots
- NYCDOT Pilot: https://www.cvp.nyc/
- Tampa (THEA): https://www.tampacvpilot.com/
- Wyoming DOT: https://wydotcvp.wyoroad.info/