Using Drones to Collect Speed Data: A Novel Approach

Presented by Alyssa Ryan

Research by Dr. Cole Fitzpatrick, Dr. Chengbo Ai, Alyssa Ryan, and Dr. Michael Knodler
Introduction and Motivation

› Speed and volume data are important for many transportation studies

› Collecting this data can be costly using traditional methods such as LiDAR, pneumatic tubes, and manual TMCs

› Small Unmanned Aerial Systems (sUAS) are already being used for civil engineering applications such as bridge inspections

› sUAS have the potential to reduce the hours required to collect speed and volume data
Background

SPEED LIMIT SETTING

› The speed limit setting process in Massachusetts requires large amounts of data to be collected (MassDOT, 2017)

› 100 speed observations at each location every 0.25 miles in the proposed zone (MassDOT, 2017)

› This can be costly and time-intensive in the field
Background

AERIAL IMAGE PROCESSING

Volume Study

A

- Chose intersection and collect video

Phantom 3 Pro

- Data collected from 7am to 8am
- Drone's camera has FOV of 94 degrees
Volume Study

Vehicle Tracking

- Kalman filter was used to predict motion
- Based on the closeness of predicted location and observed, the detection will merge to vehicle track
Volume Study

Accuracy

- Recall and precision both averaged 93%
- Accuracy was worse from 7:00am to 7:20am due to lighting

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00:00</td>
<td>100%</td>
<td>64%</td>
<td>80%</td>
<td>100%</td>
<td>68%</td>
<td>N/A</td>
<td>67%</td>
<td>80%</td>
<td>N/A</td>
<td>76%</td>
<td>N/A</td>
</tr>
<tr>
<td>7:09:20</td>
<td>N/A</td>
<td>80%</td>
<td>100%</td>
<td>N/A</td>
<td>90%</td>
<td>N/A</td>
<td>76%</td>
<td>75%</td>
<td>100%</td>
<td>86%</td>
<td>N/A</td>
</tr>
<tr>
<td>7:19:00</td>
<td>100%</td>
<td>75%</td>
<td>85%</td>
<td>100%</td>
<td>92%</td>
<td>N/A</td>
<td>93%</td>
<td>96%</td>
<td>100%</td>
<td>94%</td>
<td>N/A</td>
</tr>
<tr>
<td>7:28:20</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>90%</td>
<td>N/A</td>
<td>96%</td>
<td>89%</td>
<td>100%</td>
<td>88%</td>
<td>100%</td>
</tr>
<tr>
<td>7:41:05</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>83%</td>
<td>100%</td>
<td>N/A</td>
<td>94%</td>
<td>100%</td>
<td>86%</td>
<td>90%</td>
<td>N/A</td>
</tr>
<tr>
<td>7:50:26</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>94%</td>
<td>100%</td>
<td>88%</td>
<td>92%</td>
<td>100%</td>
<td>95%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>8:00:00</td>
<td>80%</td>
<td>92%</td>
<td>87%</td>
<td>100%</td>
<td>89%</td>
<td>100%</td>
<td>92%</td>
<td>90%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>8:09:20</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>83%</td>
<td>100%</td>
<td>100%</td>
<td>83%</td>
<td>94%</td>
<td>100%</td>
<td>100%</td>
<td>N/A</td>
</tr>
<tr>
<td>8:21:00</td>
<td>100%</td>
<td>93%</td>
<td>95%</td>
<td>100%</td>
<td>88%</td>
<td>100%</td>
<td>85%</td>
<td>90%</td>
<td>100%</td>
<td>87%</td>
<td>75%</td>
</tr>
<tr>
<td>8:30:20</td>
<td>86%</td>
<td>90%</td>
<td>100%</td>
<td>100%</td>
<td>94%</td>
<td>100%</td>
<td>83%</td>
<td>90%</td>
<td>83%</td>
<td>87%</td>
<td>100%</td>
</tr>
<tr>
<td>8:47:41</td>
<td>100%</td>
<td>100%</td>
<td>91%</td>
<td>100%</td>
<td>93%</td>
<td>N/A</td>
<td>97%</td>
<td>89%</td>
<td>80%</td>
<td>88%</td>
<td>100%</td>
</tr>
<tr>
<td>8:57:14</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>N/A</td>
<td>80%</td>
<td>N/A</td>
<td>86%</td>
<td>89%</td>
<td>100%</td>
<td>95%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Analyze time-cost and accuracy of technique
Speed Study

A

- Chose location and collect data

- To track specific vehicle, an “X” was placed on top
- Drone flew at 100 meters (328 feet)
- Probe vehicle speeds were tracked using both speedometer and smartphone app

Route 9, Amherst, MA
Speed Study

- Automated speed processing

Same technique was used as volume study, plus:
- Camera Calibration
- Speed Computation

Camera Calibration
- Transformed image coordinate system to world coordinate system

Speed Computation
- Computed the vehicle speed for all vehicle trajectories
- Computed speed based on distance measured in world coordinate system divided by time
Speed Study

Camera Calibration

- Transformed image coordinate system to world coordinate system

Speed Computation

- Computed the vehicle speed for all vehicle trajectories
- Computed speed based on distance measured in world coordinate system divided by time

Example of median smoothing scheme on derived speed in drive
Speed Study

<table>
<thead>
<tr>
<th>Direction Label</th>
<th>Actual Speed (mph)</th>
<th>Average Measured Speed (mph)</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB 1</td>
<td>45</td>
<td>48.8</td>
<td>8.4%</td>
</tr>
<tr>
<td>NB 1</td>
<td>44</td>
<td>47.5</td>
<td>8.0%</td>
</tr>
<tr>
<td>SB 2</td>
<td>50</td>
<td>52.9</td>
<td>5.8%</td>
</tr>
<tr>
<td>NB 2</td>
<td>51</td>
<td>52.4</td>
<td>2.8%</td>
</tr>
<tr>
<td>SB 3</td>
<td>55</td>
<td>59.5</td>
<td>8.3%</td>
</tr>
<tr>
<td>NB 3</td>
<td>54</td>
<td>57.3</td>
<td>6.2%</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>6.6%</td>
<td></td>
</tr>
</tbody>
</table>

- Analyze time-cost and accuracy of technique
Conclusions

› Our method of UAS and video processing for volume data collection had an **accuracy of 93%**

› Speed data collection has an **average relative error of 6.6%**

› UAS data collection is able to collect all vehicles passing through an area, unlike LiDAR and RADAR sensors

› UAS have the potential to reduce the hours required to collect speed and volume data, especially on multi-lane medium to high volume roads compared to traditional methods
Future Studies

› Specific studies related to:
 – turning movement counts
 – conflict-event studies
 – intersection delay measurement
 – parking utilization tracking
 – queue studies

› Exploring the optimal vehicle tracking method using UAS to gain the most accurate results
This research was funded in part through a grant from the Massachusetts Department of Transportation.

Contact
Alyssa Ryan
alyssaryan@umass.edu