Using Drones to Collect Speed Data: A Novel Approach Presented by Alyssa Ryan

Research by Dr. Cole Fitzpatrick, Dr. Chengbo Ai, Alyssa Ryan, and Dr. Michael Knodler

Introduction and Motivation

- Speed and volume data are important for many transportation studies
- Collecting this data can be costly using traditional methods such as LiDAR, pneumatic tubes, and manual TMCs
- Small Unmanned Aerial Systems (sUAS) are already being used for civil engineering applications such as bridge inspections
- > sUAS have the potential to reduce the hours required to collect speed and volume data

Background

SPEED LIMIT SETTING

- The speed limit setting process in Massachusetts requires large amounts of data to be collected (MassDOT, 2017)
- > 100 speed observations at each location every 0.25 miles in the proposed zone (MassDOT, 2017)
- This can be costly and timeintensive in the field

Background

AERIAL IMAGE PROCESSING

Video frames

Source: Samuelsson. O. Vehicle Tracking Algorithm for Unmanned Aerial Vehicle 4 Surveillance. No. June, 2012, pp. 1-76

Volume Study

Chose intersection
and collect video

Volume Study

Vehicle Tracking

- Kalman filter was used to predict motion
 - Based on the closeness of predicted location and observed, the detection will merge to vehicle track

Volume Study

													_
Timestamp	TL-TR	TL-BL	TL-BR	TR-TL	TR-BL	TR-BR	BL-TL	BL-TR	BL-BR	BR-TL	BR-TR	BR-BL	
7:00:00	100%	64%	80%	100%	68%	N/A	67%	80%	N/A	76%	N/A	71%	T
7:09:20	N/A	80%	100%	N/A	90%	N/A	76%	75%	100%	86%	N/A	100%	
7:19:00	100%	75%	85%	100%	92%	N/A	93%	96%	100%	94%	N/A	89%	
7:28:20	100%	100%	100%	100%	90%	N/A	96%	89%	100%	88%	100%	89%	
7:41:05	100%	100%	100%	83%	100%	N/A	94%	100%	86%	90%	N/A	89%	
7:50:26	100%	100%	100%	100%	94%	100%	88%	92%	100%	95%	100%	100%	
8:00:00	80%	92%	87%	100%	89%	100%	92%	90%	100%	100%	100%	86%	
8:09:20	100%	100%	100%	83%	100%	100%	83%	94%	100%	100%	N/A	100%	
8:21:00	100%	93%	95%	100%	88%	100%	85%	90%	100%	87%	75%	91%	
8:30:20	86%	90%	100%	100%	94%	100%	83%	90%	83%	87%	100%	100%	
8:47:41	100%	100%	91%	100%	93%	N/A	97%	89%	80%	88%	100%	86%	
8:57:14	100%	100%	100%	N/A	80%	N/A	86%	89%	100%	95%	100%	100%	

Accuracy

- Recall and precision both averaged 93%
- Accuracy was worse from 7:00am to 7:20am due to lighting

7:00am

7:20am

Chose location and collect data

- To track specific vehicle, an "X" was placed on top
- Drone flew at 100 meters (328 feet)
- Probe vehicle speeds were tracked using both speedometer and smartphone app

Route 9, Amherst, MA

 Automated speed processing

Same technique was used as volume study, plus:

- Camera Calibration
- Speed Computation

Camera Calibration

 Transformed image coordinate system to world coordinate system

Speed Computation

- Computed the vehicle speed for all vehicle trajectories
- Computed speed based on distance measured in world coordinate system divided by time

Example of median smoothing scheme on derived speed in drive

Camera Calibration

 Transformed image coordinate system to world coordinate system

Speed Computation

- Computed the vehicle speed for all vehicle trajectories
- Computed speed based on distance measured in world coordinate system divided by time

Direction Label	Actual Speed (mph)	Average Measured Speed (mph)	Relative Error
SB 1	45	48.8	8.4%
NB 1	44	47.5	8.0%
SB 2	50	52.9	5.8%
NB 2	51	52.4	2.8%
SB 3	55	59.5	8.3%
NB 3	54	57.3	6.2%
		Average:	6.6%

Conclusions

- Our method of UAS and video processing for volume data collection had an accuracy of 93%
- Speed data collection has an average relative error of 6.6%
- UAS data collection is able to collect all vehicles passing through an area, unlike LiDAR and RADAR sensors
- > UAS have the potential to reduce the hours required to collect speed and volume data, especially on multi-lane medium to high volume roads compared to traditional methods

Future Studies

> Specific studies related to:

- turning movement counts
- conflict-event studies
- intersection delay measurement
- parking utilization tracking
- queue studies
- Exploring the optimal vehicle tracking method using UAS to gain the most accurate results

Ē

Contact

Alyssa Ryan alyssaryan@umass.edu

This research was funded in part through a grant from the Massachusetts Department of Transportation.

