Analytics and Dashboards for Effective Roadside Sensor Network Management

Session: Rural Incident Management and Performance Data

Keith Vertin and David St. John
Digital Traffic Systems, Inc.

Email: keith.vertin@digitaltrafficsystems.com
Topics

› Analytics and dashboards for traffic sensor network management in Virginia

› Proof-of-Concept application to support performance measure reporting for Traffic Incident Management
Traffic Data Collection Network in Virginia

› Digital Traffic Systems owns, operates and maintains a statewide radar sensor network to support transportation operations and data collection for VDOT

› 210 non-intrusive continuous count sites collect traffic volume and speed data
We've developed a new approach for network management by creating a customized portal to enable access to all program data in one place.

Portal serves field technicians, operations engineers, analysts, office workers, and management:
- Operational status and automated notifications
- Maintenance Management System – assets and work flow processes
- Traffic data and quality checking
- Performance measures and transparent reporting

Dashboards make complex data easily accessible, and promote data-driven decision making and continuous improvement.
Current Network Status

- Dashboard prominently displays potential data outages on a PC or mobile device, triggering a verification and diagnosis process.
- Data transmissions are monitored throughout the day to rapidly detect “missing intervals” (5 minute bin data) and notify users.

Users can check open service requests to determine if outage is due to scheduled maintenance work.
Process Control

› Maintenance Management System
 – Assets and inventory
 – Network topology
 – Work flow
 – Classification of reported problems and fixes, and frequency of occurrence tracked for continuous improvement

› Make/Model and Firmware
 – Identify sites with outdated firmware
 – Track status of upgrade campaigns, such as sensor or battery replacement
High Availability Network Performance

Performance measure is full day data completeness (100% of data) to support FHWA AADT reporting. Program typically achieves 99.0% full day data completeness, and 99.9% bin data completeness.

Determine data loss patterns – intermittent, continuous, by site and by date.

Summarize 20 types of quality checks for the collected data.
On-Demand Visualization of Traffic Patterns
Suite of Dashboards Query Billions of Traffic Data Records

Vehicle Length Classification*

Filter by date range, lane direction, number and type

Daily Counts

Speed Histogram

* VDOT currently doesn’t use radar-based length classification due to its reduced accuracy compared to axle+weight classification.
The traffic database contains high-quality data that are logged continuously…

Can we detect traffic incidents?
Traffic Incident Management Performance Measures

› The “timeline of events” for traffic incidents provides some commonly used performance measures

› Some events involve human data entry (police patrols, in blue) and are available in reported crash data, whereas other events are difficult to obtain

› Traffic data analytics can provide independent information to fill knowledge gaps and automate calculation of performance measures (notably, T0 and T7)

Traffic Data and Crash Data Fusion

- Proof-of-Concept performed for a rural segment of I-64 from Richmond to Staunton, Virginia – Afton Mountain
- Traffic data from 13 radar sensor sites
- Crash data from VDOT Virginia Roads open data portal
- Analysis from Jan 2016 to Apr 2019
- Algorithm calculates incident statistics, by matching traffic data with crash data using the reported crash date and time
Historical Traffic Data

- Traffic volume and speed data can be very repeatable when aligned by weekday and season
- DTS uses these patterns to check for radar sensor data quality problems
- Deviations to the daily traffic pattern may also reveal roadway incidents
Crash Detection from Radar Sensor Data

A COLLISION SCENARIO

Vehicle speed in both lanes slows down
Lane 2 volume increases compared to normal traffic flow
Lane 1 volume decreases

The algorithm uses both speed and volume measurements from each lane and compares to historical data to positively identify the crash event, and then calculates the incident duration and number of vehicles effected.
Interactive Dashboard for Traffic Incident Analysis

All Weather

Traffic Incident Performance Measures

Incident Location and Traffic Data Site

Frequency of Incidents by Report Type

- Fixed Object - Off Road: 40.2%
- Rear End: 27.5%
- Deer: 13.2%
- Sideswipe - Same Direction: 5.8%
- Angle: 3.1%
- Non-Collision: 3.5%
- Other Animal: 1.7%
- Other: 1.2%

Time to Return to Normal Traffic Flow (Minutes)

- Time to Return to Normal Traffic Flow (min): 30
- Cumulative Percent of Incidents (%): 90.34%

Incident Details and By-Lane Statistics

<table>
<thead>
<tr>
<th>Start Date</th>
<th>Incident ID</th>
<th>Weather Condition</th>
<th>Lane</th>
<th>Vehicles Delayed</th>
<th>Vol Change (%)</th>
<th>Speed Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-12-14</td>
<td>544629</td>
<td>Mist</td>
<td>W2</td>
<td>367</td>
<td>-38</td>
<td>-00</td>
</tr>
<tr>
<td>2018-12-13</td>
<td>60137</td>
<td>No Adverse Condition (Clear/Crystal)</td>
<td>W1</td>
<td>52</td>
<td>-61</td>
<td>-18</td>
</tr>
<tr>
<td></td>
<td>649750</td>
<td>No Adverse Condition (Clear/Crystal)</td>
<td>W2</td>
<td>70</td>
<td>-36</td>
<td>-45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WR1</td>
<td>124</td>
<td>1</td>
<td>-29</td>
</tr>
</tbody>
</table>

Number of Incidents: 652
Incidents with Injuries or Fatalities: 180
Number of Vehicles Delayed by Incidents: 33,148
Average Time to Return to Normal Traffic Flow (minutes): 10.57
Traffic Incidents – Sensitivity to Weather

Adverse Weather (excludes clear and cloudy conditions)
Traffic Incidents – Sensitivity to Weekday/Weekend

Data indicates:
› There are proportionally more rear end collisions on weekdays
› Time to return to normal traffic flow is faster on weekends
Summary

› Interactive dashboards are making complex data easily accessible by our data consumers, resulting in program efficiency, data quality and network availability gains

› Historical traffic data is a key enabler for more advanced analytics to track “real-world” performance measures

› Radar Sensor data combined with TIM analytics provide new and accurate performance measures not commonly obtainable
 – Detection of incident start time
 – Time to return to normal traffic flow
 – Number of vehicles affected by incident
 – Speed and volume impacts by lane, also useful as lane obstruction indicators