

Effectiveness of Pedestrian Crossing Treatments at Night

Kay Fitzpatrick

Texas A&M Transportation

Institute

Background

- Texas, between 2010 and 2016:
 - 3434 fatal pedestrian crashes representing 16 percent of all fatal crashes
- Large majority of fatal pedestrian crashes occur during nighttime (79 percent)

2021 Texas A&M Transportation Institute

Goal

 Compare the day and night operational performance of the PHB, RRFB, and LED-Em treatments

2021 Texas A&M Transportation Institut

Study Approach

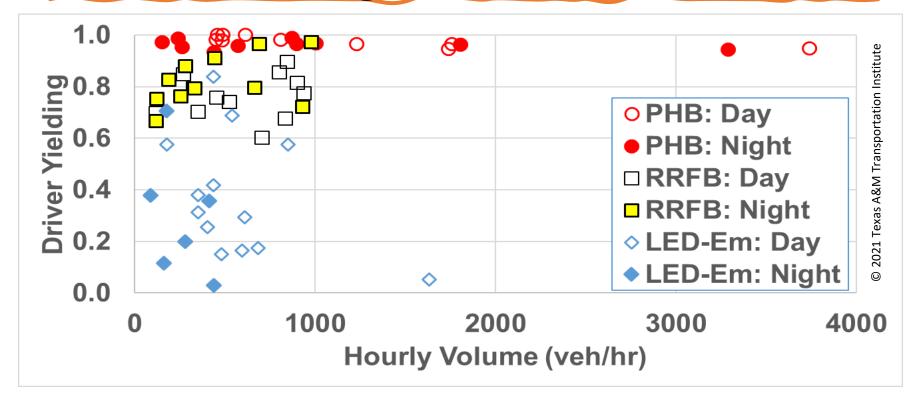
- Goal: 30 sites, both daytime and nighttime
- Site identification:
 - Build upon previous year's study of LED-Ems
 - Updated list of PHBs in Austin
 - TexITE e-newsletter request, especially for RRFBs

© 2021 Texas A&M Transportation Institui

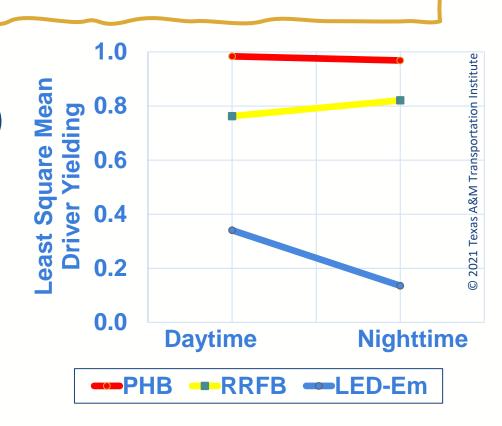
Number of Sites

- Site selection:
 - Goal of 10 sites for each treatment of interest
 - Range of posted speed limits and median type
 - Limit to 2- or 4-lane roads
 - Data collection efficiency

TYPE	DAY OR NIGHT	SITES
LED-Em	Day	13
LED-Em	Night	6
РНВ	Day	10
PHB	Night	10
RRFB	Day	12
RRFB	Night	11


Data Collection

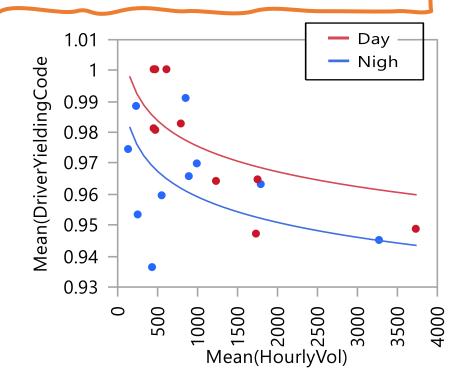
Protocol: 60 staged pedestrian crossing events or 4-hours of data


When: November 2019 to February 2020, May 2019

Driver Yielding by Hourly Volume, Per Site and Light Level

Day / Night

- Consider all data
- Treatment type (results are different, statistically)
- PHB = similar day & night
- RRFB = higher at night (not statistically significant)
- LED-Em = higher at day (statistically significant)


Posted Speed Limit

- Consider all data
- Low speed = 20 (school zone), 30, or 35 mph
- High speed = 40, 45, or 50 mph

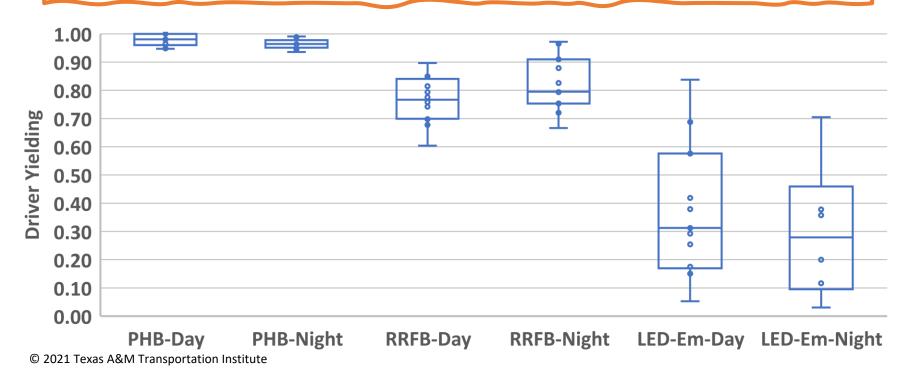
LSM Differences Tukey HSD						
Level	#Sites	Α	В	С	Least Square Mean (LSM)	
PHB, Low	5	Α			0.978	
PHB, High	5	Α			0.974	
RRFB, Low	6	Α			0.789	
RRFB, High	6	Α			0.795	
LED-Em, Low	10		В		0.376	
LED-Em, High	3			С	0.101	

PHB

- Data for 10 PHB sites
- Significant variables:
 - Light level
 - Higher driver yielding during daytime (98% compared to 96%), but not practically different
 - Hourly volume
 - Slightly lower driver yielding at higher volumes, again not practically different

RRFB

- Previous studies found <u>higher driver yielding</u> for:
 - 2-leg (midblock)
 - Median refuge present
 - School within 0.5 mile
 - Advance yield lines present
- Current study included data for 12 RRFB sites
 - Limited additional insights, demonstrates that site conditions greatly influence driver yielding for this type of device
 - Support use of advance yield lines



LED-Em

- Number of sites: 13 daytime, 6 nighttime
- Findings, <u>higher driver yielding</u> for:
 - Lower speed limit group (20-school zone, 30-35 mph)
 - 2 lanes rather than 4 lanes
 - Narrow lanes
 (10.5-11 ft rather 11.5-12 ft)
 - Lower hourly volumes
 - Daytime
 - Advance yield line present

Is the Pedestrian Treatment More or Less Effective at Night?

Questions...

Kay Fitzpatrick
K-Fitzpatrick@tamu.edu
Texas A&M Transportation Institute

