COOPERATIVE TRANSPORTATION SYSTEMS POOLED FUND STUDY AASHTO

2011 National Rural ITS Conference Coeur d'Alene, Idaho

Rick McDonough Office of Safety and Security New York State Department of Transportation

Year Two Projects

 Aftermarket On-Board Equipment for Cooperative Transportation Systems
 Prime Contractor – Visteon

 Certification Program for Cooperative Transportation Systems/Connected Vehicles
 Prime Contractor - OmniAir

Project #1 - Aftermarket On-Board Equipment for Cooperative Transportation Systems

• Background

- The successful deployment of Connected Vehicle applications will depend on the widespread installation of OBE units in fleets for light and heavy vehicles.
- Goals
 - Identify requirements for a Dynamic Configurable Multi-Band OBE (e.g., capable of multiple communications technologies)
 - To provide strategic recommendations in fostering the rapid introduction of OBEs.

Objectives

- Analyze industry's ability to manufacture dynamic configurable multi-band aftermarket OBE units;
- Identify actions necessary to reduce consumer cost of aftermarket OBE purchase; and
- identify actions needed to accelerate installation of aftermarket OBE units in the vehicle fleet.

Task 1: Identify Requirements of a Dynamic Configurable Multi-Band OBE

- Review current materials related to the Connected Vehicle OBE unit; summarize the requirements & specifications of an OBE unit for the Connected Vehicle program
- This task will be the foundation for all subsequent tasks
- It is not intended that a whole new set of requirements be developed but rather combine existing requirements of various communications technologies for a multi-band OBE
 - Various communications technologies under the Connected Vehicle program will be identified, including, but not limited to, 5.9 GHz DSRC, cellular, satellite, and Wi-Fi for all vehicle types

Latitude, longitude, time, heading angle, speed, lateral acceleration, longitude acceleration, yaw rate, throttle position, brake status, steering angle, hcc:tlight tatus, turn signal status, vehicle length,

Task 2: Analysis of Current Market Readiness

- Analyze (1) devices currently available, and (2) the industry's capability to produce dynamic configurable multi-band OBE units at affordable prices.
 - Task 2.1: Interview Suppliers
 - DSRC, cellular, satellite and Wi-Fi manufacturers/service providers to assess the current market readiness
 - Chipset manufacturers to gain insight into the technology roadmaps that will ultimately shape the market readiness

Task 2: Analysis of Current Market Readiness (Con't.)

• Task 2.2: Investigate Available OBE Hardware

 Assess any devices (including factory installed OBE unit, retrofit device, aftermarket carry-in device, etc.) that may be modified and/or used as aftermarket OBE units

• Task 2.3: Market Research

 Focus group interviews from metropolitan areas that have heavy traffic conditions such as Los Angeles, San Francisco, Boston, Detroit, Washington, D.C., and New York City

Task 3: Preparation of a Guidance Document to Help Develop a Procurement Document

- This task is based on the results from Task 1 and Task 2
- Develop a procurement document for the actual development of a dynamic configurable multi-band aftermarket OBE

• Task 3.1: Literature Review

- Review existing documentation to develop best in class procurement procedures
- **Task 3.2: Generate Document**
- A Procurement Guidance Document will be developed

Task 4: Develop Strategy

- An in-depth strategy will be developed that fosters a rapid introduction of aftermarket OBE units to the vehicle fleet.
- It will also address how to garner consumer interest to purchase aftermarket OBE units for their vehicles.
- **Task 4.1 Integration Assessment**
 - A crucial OBE aspect is how it will interface with the vehicle, if at all.
 - The features and attributes of the OBE will be critical to ensuring that a significant number of people and/or companies will purchase the units for their vehicles.
 - Outside market forces will be examined that may persuade drivers to purchase the OBE units.

Task 4: Develop Strategy (Con't.)

• Task 4.2 Literature Review

 Examine outside market forces that may affect driver adoption of Connected Vehicle capabilities and technologies.

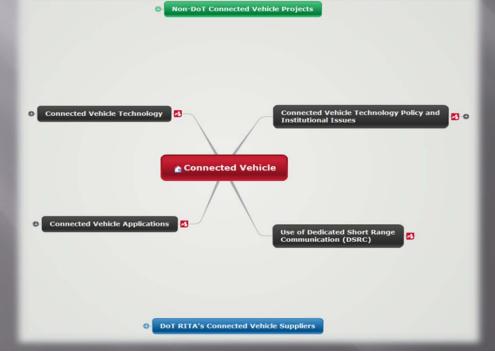
Task 4.3 Generate Report

 A Strategy Report will be generated, reviewed, and finalized which addresses the optimal methods for interfacing with the vehicle and what features will attract consumers.

Project #2 - Certification Program for Cooperative Transportation Systems/Connected Vehicles

• Goal

• Develop foundational knowledge to inform PFS members on the certification issues to support the future development of a certification program for hardware and software standards compliance and interoperability


Objectives

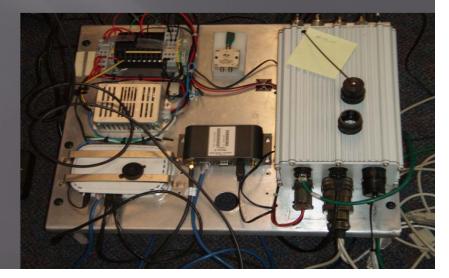
- Review general certification practices
- Review current activities associated with Connected Vehicle certification
- Prepare recommended next steps and action items necessary to create a certification procedure

Task 1 – Mapping the Connected Vehicle Certification Landscape

Objective:

- To provide a summary view of the interconnected initiatives that comprise the Connected Vehicle Community
- **Deliverable:** Interactive Mindomo map

- Organizational Connections
- Subject Matter Connections
- Embedded Content


Task 2 – Overview of the Connected Vehicle Certification System

Objective:

• Summary view of work efforts and outcomes specific to certification process for the Connected Vehicle program

Deliverable:

- Summary of foundational elements of relevant certification programs as models for CVCS
 - Overview of CVCS
 - Organizational Design
 - Certification Structure
 - Process

Task 3 - State and Local Needs Assessment

Review Federal and State Initiatives

- Federal Initiatives
 - Consult OmniAir Members
 - Discussions with US DOT staff
 - Review Existing Documentation
- State Initiatives
 - Conduct Interviews with Pooled Fund States
 - Conduct Interviews with other Active States

Identify State Needs

- Develop a Comparison Matrix
- Identify Gaps and Needs
- Tag Most Important Gaps
- Create and Administer the Survey
- Analyze Survey Results
- Document Survey Results and Recommendations

Task 4 - Gap Analysis and Recommendations

- Identify Gaps between States
- Identify Gaps between Federal and State
- Create a Survey to Gather State Feedback on Gaps

Affiliated Interoperable Test Beds

PFS Dynamic Mobility Applications Program

Background

- US DOT has recently identified ten high-priority mobility applications under the Dynamic Mobility Applications (DMA) program for the connected vehicle environment
- Among the ten identified high-priority applications, three (Intelligent Traffic Signal System, Transit Signal Priority, and Mobile Accessible Pedestrian Signal System) are related to transformative traffic signal operations

PFS DMA Program

Background (con't.)

- The AASHTO PFS and USDOT entered into an MOU for USDOT to provide funding to the PFS to advance projects that will support the Dynamic Mobility Applications Program
- The PFS will be advertising within the next month a project entitled "Multi-Modal Intelligent Traffic Signal System" in support of the US DOT's Dynamic Mobility Applications Program

PFS Multi-Modal Intelligent Traffic Signal System

• Goal

 To conduct foundational analysis and design necessary to fully prepare for a field test/demonstration of a Multi-Modal Intelligent Traffic Signal System

Objectives

- To develop a concept of operations, systems requirements and system design that services multiple modes of
 transportation including general vehicles, transit,
 emergency vehicles, freight fleets and pedestrians; and
- To prepare for field testing/demonstration of the developed Multi-Modal Intelligent Traffic Signal System.

Cooperative Transportation Systems Pooled Fund Study AASHTO

Benefits to New York State

- AASHTO is a recognized transportation forum that has national credibility and standing
- Provides a useful liaison/coordination role between states and USDOT
- Gives the states a voice/seat at the national Connected Vehicle table
- Exchange ideas and keep abreast of the state and local level Connected Vehicle activities
- Provides/receives USDOT funding for efforts of mutual interest to states and locals
- Some travel is funded, and great folks!

Thank You!

Rick McDonough, NYSDOT Planning and Development Bureau Office of Modal Safety & Security New York State Department of Transportation Albany, New York (518) 457-5871 mcdonough@dot.state.ny.us

